One-step implementation of a multiqubit controlled-phase-flip gate in coupled cavities


Multiqubit quantum controlled-phase-flip (CPF) gate between atomic qubits is desirable for scalable and distributed quantum computation. Here, we propose a scheme to realize a multiqubit quantum CPF gate between different atoms, which are trapped in separate cavities coupled by short optical fiber. After a single-photon pulse reflected by the cavity-atoms system, a multiqubit CPF gate can be implemented by only one step.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  2. 2.

    Jaksch, P., Papageorgiou, A.: Eigenvector approximation leading to exponential speedup of quantum eigenvalue calculation. Phys. Rev. Lett. 91, 257902 (2003)

    Article  ADS  Google Scholar 

  3. 3.

    Paz, J.P., Roncaglia, A.: Quantum gate arrays can be programmed to evaluate the expectation value of any operator. Phys. Rev. A 68, 052316 (2003)

    Article  ADS  Google Scholar 

  4. 4.

    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  5. 5.

    Cory, D.G., Price, M.D., Maas, W., Knill, E., Laflamme, R., Zurek, W.H., Havel, T.F., Somaroo, S.S.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152 (1998)

    Article  ADS  Google Scholar 

  6. 6.

    Monz, T., Kim, K., Hänsel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)

    ADS  Google Scholar 

  7. 7.

    Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170 (2012)

    Article  ADS  Google Scholar 

  8. 8.

    Reed, M.D., DiCarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382 (2012)

    Article  ADS  Google Scholar 

  9. 9.

    Chen, M.-F., Chen, Y.-F., Ma, S.-S.: One-step implementation of a Toffoli gate of separated superconducting qubits via quantum Zeno dynamics. Quantum Inf. Process 15, 1469 (2016)

    MathSciNet  Article  ADS  Google Scholar 

  10. 10.

    Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch, K.J., Pryde, G.J., O’Brien, J.L., Gilchrist, A., White, A.G.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134 (2009)

    Article  Google Scholar 

  11. 11.

    Mičuda, M., Sedlák, M., Straka, I., Miková, M., Dušek, M., Ježek, M., Fiurášek, J.: Efficient experimental estimation of fidelity of linear optical quantum Toffoli gate. Phys. Rev. Lett. 111, 160407 (2013)

    Article  ADS  Google Scholar 

  12. 12.

    Mičuda, M., Stárek, R., Straka, I., Miková, M., Dušek, M., Ježek, M., Filip, R., Fiurášek, J.: Quantum controlled-Z gate for weakly interacting qubits. Phys. Rev. A 92, 022341 (2015)

    Article  ADS  Google Scholar 

  13. 13.

    Fiurášek, J.: Linear-optics quantum Toffoli and Fredkin gates. Phys. Rev. A 73, 062313 (2006)

    Article  ADS  Google Scholar 

  14. 14.

    Stojanović, V.M., Fedorov, A., Wallraff, A., Bruder, C.: Quantum-control approach to realizing a Toffoli gate in circuit QED. Phys. Rev. B 85, 054504 (2012)

    Article  ADS  Google Scholar 

  15. 15.

    Wei, H.R., Deng, F.G.: Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express 22, 593 (2014)

    Article  ADS  Google Scholar 

  16. 16.

    Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)

    Article  Google Scholar 

  17. 17.

    Pellizzari, T., Gardiner, S.A., Cirac, J.I., Zoller, P.: Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75, 3788 (1995)

    Article  ADS  Google Scholar 

  18. 18.

    Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)

    Article  ADS  Google Scholar 

  19. 19.

    Pachos, J.K., Beige, A.: Decoherence-free dynamical and geometrical entangling phase gates. Phys. Rev. A 69, 033817 (2004)

    Article  ADS  Google Scholar 

  20. 20.

    Xiao, Y.F., Zou, X.B., Guo, G.C.: One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75, 054303 (2007)

    Article  ADS  Google Scholar 

  21. 21.

    Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  22. 22.

    Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science 342, 1349 (2013)

    Article  ADS  Google Scholar 

  23. 23.

    Tiecke, T.G., Thompson, J.D., de Leon, N.P., Liu, L.R., Vuletić, V., Lukin, M.D.: Nanophotonic quantum phase switch with a single atom. Nature 508, 241 (2014)

    Article  ADS  Google Scholar 

  24. 24.

    Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237 (2014)

    Article  ADS  Google Scholar 

  25. 25.

    Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)

    Article  ADS  Google Scholar 

  26. 26.

    Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)

    Article  ADS  Google Scholar 

  27. 27.

    Cohen, I., Mølmer, K.: Deterministic quantum network for distributed entanglement and quantum computation. Phys. Rev. A 98, 030302(R) (2018)

    Article  ADS  Google Scholar 

  28. 28.

    Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)

    Article  ADS  Google Scholar 

  29. 29.

    Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  Google Scholar 

  30. 30.

    Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)

    Article  ADS  Google Scholar 

  31. 31.

    Hao, Y.M., Lin, G.W., Xia, K.Y., Lin, X.M., Niu, Y.P., Gong, S.Q.: Quantum controlled-phase-flip gate between a flying optical photon and a Rydberg atomic ensemble. Sci. Rep. 5, 10005 (2015)

    Article  ADS  Google Scholar 

  32. 32.

    Li, P.B., Gu, Y., Wang, K., Gong, Q.H.: Dark-state polaritons for quantum memory in a five-level M-type atomic ensemble. Phys. Rev. A 73, 032343 (2006)

    Article  ADS  Google Scholar 

  33. 33.

    Duan, L.M., Kuzmich, A., Kimble, H.J.: Cavity QED and quantum-information processing with “hot” trapped atoms. Phys. Rev. A 67, 032305 (2003)

    Article  ADS  Google Scholar 

  34. 34.

    Spillane, S.M., Kippenberg, T.J., Painter, O.J., Vahala, K.J.: Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003)

    Article  ADS  Google Scholar 

  35. 35.

    Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature (London) 449, 443 (2007)

    Article  ADS  Google Scholar 

  36. 36.

    Aoki, T., Dayan, B., Wilcut, E., Bowen, W.P., Parkins, A.S., Kippenberg, T.J., Vahala, K.J., Kimble, H.J.: Observation of strong coupling between one atom and a monolithic microresonator. Nature (London) 443, 671 (2006)

    Article  ADS  Google Scholar 

  37. 37.

    Welte, S., Hacker, B., Daiss, S., Ritter, S., Rempe, G.: Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X 8, 011018 (2018)

    Google Scholar 

  38. 38.

    Das, S., Grankin, A., Iakoupov, I., Brion, E., Borregaard, J., Boddeda, R., Usmani, I., Ourjoumtsev, A., Grangier, P., Sørensen, A.S.: Photonic controlled-PHASE gates through Rydberg blockade in optical cavities. Phys. Rev. A 93, 040303(R) (2016)

    Article  ADS  Google Scholar 

  39. 39.

    Wade, A.C.J., Mattioli, M., Mølmer, K.: Single-atom single-photon coupling facilitated by atomic-ensemble dark-state mechanisms. Phys. Rev. A 94, 053830 (2016)

    Article  ADS  Google Scholar 

Download references


This work was supported by the National Natural Sciences Foundation of China (Grants Nos. 11674094, 11474092, 11774089), Shanghai Natural Science Fund Project (Grants Nos. 17ZR1442700, 18ZR1410500).

Author information



Corresponding authors

Correspondence to Gongwei Lin or Yueping Niu or Shangqing Gong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Lin, G., Niu, Y. et al. One-step implementation of a multiqubit controlled-phase-flip gate in coupled cavities. Quantum Inf Process 18, 18 (2019).

Download citation


  • Multiqubit quantum controlled-phase-flip (CPF) gate
  • Quantum computation
  • Optical fiber