An improved multidimensional reconciliation algorithm for continuous-variable quantum key distribution

Abstract

Reconciliation is a crucial procedure for continuous-variable quantum key distribution (CV-QKD) systems since it directly affects the performance of practical system including processing speed, secret key rate, and maximal transmission distance. In this paper, we proposed a novel initial decoding message computation method for multidimensional reconciliation with low density parity check code, which does not need the norm information from the encoder. Both theoretical analysis and simulation results demonstrate that the improved scheme can greatly decrease the communication traffic and storage resource consumption of the reconciliation procedure almost without degradation in the reconciliation efficiency. What is more, the improved scheme can decrease the secure key consumption for classical channel authentication, then increase the secure key rate, and also be conducive to the realization of high-speed CV-QKD systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  2. 2.

    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Gisin, G., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    ADS  Article  Google Scholar 

  4. 4.

    Weedbrook, C., Pirandola, S., Cerf, N.J., et al.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Article  Google Scholar 

  6. 6.

    Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13(10), 2313–2324 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    ADS  Article  Google Scholar 

  8. 8.

    Lodewyck, J., Bloch, M., Fossier, S., Karpov, E., Diamanti, E., et al.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A. 76(4), 538–538 (2007)

    Article  Google Scholar 

  9. 9.

    Fossier, S., Diamanti, E., Debuisschert, T., Villing, A., Grangier, P.: Field test of a continuous-variable quantum key distribution prototype. New J. Phys. 11(4), 045023 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    Asp, H., Bengtsson, B., Jensen, P.: Long distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A. 84(6), 062317 (2011)

    Article  Google Scholar 

  11. 11.

    Guo, H., Peng, X., Li, Z.: Continuous-variable measurement-device-independent quantum key distribution with imperfect detectors. IEEE Lasers Electro Opt 90, 1–2 (2014)

    Google Scholar 

  12. 12.

    Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2015)

    ADS  Article  Google Scholar 

  13. 13.

    Wang, C., Huang, D., Huang, P., Lin, D., Peng, J., Zeng, G.: 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel. Sci. Rep. 5(4), 102–108 (2015)

    Google Scholar 

  14. 14.

    García-Patrón, R., Cerf, N.J.: Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190503 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    Becir, A., Wahiddin, M.R.B.: Tight bounds for the eavesdropping collective attacks on general CV-QKD protocols that involve non-maximally entanglement. Quantum Inf. Process. 12(2), 1155–1171 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Renner, R.: De finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(11), 110504 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., et al.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109(10), 100502 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95(95), 080501 (2005)

    ADS  Article  Google Scholar 

  19. 19.

    Dixon, A.R., Sato, H.: High speed and adaptable error correction for megabit/s rate quantum key distribution. Sci. Rep. 4, 7275 (2014)

    ADS  Article  Google Scholar 

  20. 20.

    Gallager, R.G.: Low-density parity-check codes. IEEE Commun. Surv. Tutor. 13(1), 3–26 (1962)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. Adv. Cryptol. Eurocrypt 93(765), 410–423 (1993)

    MATH  Google Scholar 

  22. 22.

    Buttler, W.T., Lamoreaux, S.K., Torgerson, J.R., et al.: Fast, efficient error reconciliation for quantum cryptography. Phys. Rev. A 67(5), 052303 (2003)

    ADS  Article  Google Scholar 

  23. 23.

    Yan, H., Ren, T., Peng, X., Lin, X., Jiang, W., Liu, T., et al.: Information reconciliation protocol in quantum key distribution system. Proc. IEEE Int. Conf. Nat. Comput. 3, 637–641 (2008)

    Google Scholar 

  24. 24.

    Ch, S., Korolkova, N., Leuchs, G.: Quantum key distribution with bright entangled beams. Phys. Rev. Lett. 88(16), 167902 (2002)

    ADS  Article  Google Scholar 

  25. 25.

    Ch, S., Ralph, T.C., Lütkenhaus, N., Leuchs, G.: Continuous variable quantum cryptography: beating the 3 db loss limit. Phys. Rev. Lett. 89(16), 167901 (2002)

    ADS  Article  Google Scholar 

  26. 26.

    Van, A.G., Cardinal, J., Cerf, N.J.: Reconciliation of a quantum-distributed gaussian key. IEEE Trans. Inf. Theory. 50(2), 394–400 (2004)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Bloch, M., Thangaraj, A., Mclaughlin, S.W., Merolla, J.M.: LDPC-based Gaussian key reconciliation. In: 2006 IEEE Information Theory Workshop, ITW ’06 Punta del Este. IEEE, pp. 116–120 (2006)

  28. 28.

    Leverrier, A., Alléaume, R., Boutros, J., Zémor, G., Grangier, P.: Multidimensional reconciliation for a continuous-variable quantum key distribution. Phys. Rev. A 77(4), 140–140 (2008)

    Article  Google Scholar 

  29. 29.

    Jouguet, P., Kunzjacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7(5), 378–381 (2013)

    ADS  Article  Google Scholar 

  30. 30.

    Jouguet, P., Kunzjacques, S.: High performance error correction for quantum key distribution using polar codes. Quantum Inf. Comput. 14(3), 329–338 (2012)

    MathSciNet  Google Scholar 

  31. 31.

    Leverrier, A., Grangier, P.: Continuous-variable quantum key distribution protocols with a non-Gaussian modulation. Phys. Rev. A 83(83), 3182–3182 (2011)

    Google Scholar 

  32. 32.

    Lin, D., Huang, D., Huang, P., Peng, J., Zeng, G.: High performance reconciliation for continuous-variable quantum key distribution with LDPC code. Int. J. Quantum Inf. 13(02), 1550010 (2015)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Wang, X., Zhang, Y.C., Li, Z. et al.: Efficient rate-adaptive reconciliation for continuous-variable quantum key distribution. arXiv:1703.04916 (2017)

  34. 34.

    Jiang, X.Q., Huang, P., Huang, D., Lin, D., Zeng, G.: Secret information reconciliation based on punctured low-density parity-check codes for continuous-variable quantum key distribution. Phys. Rev. A 95(2), 022318 (2017)

    ADS  Article  Google Scholar 

  35. 35.

    Walenta, N., Burg, A., Caselunghe, D., Constantin, J., Gisin, N., Guinnard, O., Houlmann, R., Junod, P., Korzh, B., Kulesza, N., et al.: A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing. New J. Phys. 16(1), 013047 (2014)

    ADS  Article  Google Scholar 

  36. 36.

    Mink, A.: Custom hardware to eliminate bottlenecks in QKD throughput performance. In: Proceedings of SPIE The International Society for Optical Engineering, p. 6780 (2007)

  37. 37.

    Chung, S.Y., Richardson, T.J., Urbanke, R.L.: Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Trans. Inf. Theory 47(2), 657–670 (2000)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC No. 61471141 and No. 61771168, Key Technology Program of Shenzhen, China, (No. JSGG20160427185010977), Space Science and Technology Advance Research Joint Funds (6141B06110105). 2018 Shenzhen Discipline Layout Project (No. JCYJ20170815145900474), and Shenzhen Basic Research Project (No. JCYJ20170818115704188). Many thanks are extended to Prof. H. Guo’s group of Peking university and Prof. S. Yu’s group of Beijing University of Post and Telecommunications for the helpful discussion on the experimental results.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qiong Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wen, X., Mao, H. et al. An improved multidimensional reconciliation algorithm for continuous-variable quantum key distribution. Quantum Inf Process 18, 25 (2019). https://doi.org/10.1007/s11128-018-2126-0

Download citation

Keywords

  • Continuous-variable quantum key distribution
  • Multidimensional reconciliation
  • Quantization
  • Low density parity check code
  • Reconciliation efficiency