Multiparty quantum secure direct communication immune to collective noise

Abstract

In this paper, the N-particle GHZ states are used as quantum resources for multiparty quantum secure direct communication. Three new multiparty quantum secure direct communication protocols are proposed, which are based on the ideal quantum channels, the collective–dephasing noise channels and the collective–rotation noise channels, respectively. With the help of logical quantum states, the latter two protocols can be immune to the collective–dephasing noise and the collective–rotation noise, respectively. The security analysis shows that the Trojan horse attacks and the teleportation attack are automatically resisted because of the one-way transmission of quantum states in quantum channels. The use of the decoy states (or decoy logical qubits) also makes the three protocols secure against other kinds of attacks. Moreover, all of them have no information leakage problem.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179 (1984)

  2. 2.

    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Article  Google Scholar 

  3. 3.

    Wang, L.L., Ma, W.P.: Controlled quantum secure communication protocol with single photons in both polarization and spatial-mode degrees of freedom. Mod. Phys. Lett. B 30, 1650051 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    ADS  Article  Google Scholar 

  5. 5.

    He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Xu, G.B., Wen, Q.Y., Qin, S.J., et al.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93, 032341 (2016)

    ADS  Article  Google Scholar 

  7. 7.

    Liu, F., Gao, F., Wen, Q.Y.: Linear monogamy of entanglement in three-qubit systems. Sci. Rep. 5, 16745 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Jin, X.R., Ji, X., Zhang, Y.Q., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67–70 (2006)

    ADS  Article  Google Scholar 

  10. 10.

    Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23, 1680–1682 (2006)

    ADS  Article  Google Scholar 

  11. 11.

    Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15, 1418–1420 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    Yin, A.H., Tang, Z.H.: Two-step efficient quantum dialogue with three-particle entangled W state. Int. J. Theor. Phys. 53, 2760–2768 (2014)

    Article  Google Scholar 

  13. 13.

    Gao, F., Qin, S.J., Wen, Q.Y., et al.: Comment on: three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 372, 3333–3336 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int. J. Quantum Inf. 6, 325–329 (2008)

    Article  Google Scholar 

  15. 15.

    Luo, Y.P., Lin, C.Y., Hwang, T.: Efficient quantum dialogue using single photons. Quantum Inf. Process. 13, 2451–2461 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Ye, T.Y.: Quantum dialogue without information leakage using a single quantum entangled state. Int. J. Theor. Phys. 53, 3719–3727 (2014)

    Article  Google Scholar 

  17. 17.

    Zhou, N.R., Wu, G.T., Gong, L.H., et al.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52, 3204–3211 (2013)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Man, Z.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett. 24, 15–18 (2007)

    ADS  Article  Google Scholar 

  19. 19.

    Wang, M.Y., Yan, F.L.: Three-party simultaneous quantum secure direct communication scheme with EPR pairs. Chin. Phys. Lett. 24, 2486 (2007)

    ADS  Article  Google Scholar 

  20. 20.

    Chong, S.K., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284, 515–518 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    Wang, L.Y., Chen, X.B., Xu, G., et al.: Information leakage in three-party simultaneous quantum secure direct communication with EPR pairs. Opt. Commun. 284, 1719–1720 (2011)

    ADS  Article  Google Scholar 

  22. 22.

    Yin, X.R., Ma, W.P., Shen, D.S., et al.: Efficient three-party quantum secure direct communication with EPR Pairs. J. Quantum Inf. Sci. 1, 3 (2013)

    Google Scholar 

  23. 23.

    Wang, L.L., Ma, W.P., Wang, M.L., Shen, D.S.: Three-party quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 2490–2499 (2016)

    Article  Google Scholar 

  24. 24.

    Shen, D.S., Ma, W.P., Yin, X.R., et al.: Quantum dialogue with authentication based on Bell states. Int. J. Theor. Phys. 52, 1825–1835 (2013)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Yin, X.R., Ma, W.P., Liu, W.Y., Shen, D.S.: Efficient bidirectional quantum secure communication with two-photon entanglement. Quantum Inf. Process. 12, 3903–3102 (2013)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    ADS  Article  Google Scholar 

  27. 27.

    Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131–2142 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14, 1469–1486 (2015)

    ADS  Article  Google Scholar 

  29. 29.

    Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14, 1487–1499 (2015)

    ADS  Article  Google Scholar 

  30. 30.

    Wu, D., Lv, H.J., Xie, G.J.: Robust anti-collective noise quantum secure direct dialogue using logical Bell states. Int. J. Theor. Phys. 55, 457–469 (2016)

    Article  Google Scholar 

  31. 31.

    Ye, T.Y.: Fault-tolerant authenticated quantum dialogue using logical Bell states. Quantum Inf. Process. 14, 3499–3514 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    He, Y.F., Ma, W.P.: Three-party quantum secure direct communication against collective noise. Quantum Inf. Process. 16, 252 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    ADS  Article  Google Scholar 

  34. 34.

    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    ADS  Article  Google Scholar 

  35. 35.

    Liu, F., Su, Q., Wen, Q.Y.: Eavesdropping on multiparty quantum secret sharing scheme based on the phase shift operations. Int. J. Theor. Phys. 53, 1730–1737 (2014)

    Article  Google Scholar 

  36. 36.

    He, Y.F., Ma, W.P.: Two-party quantum key agreement protocol with four-particle entangled states. Mod. Phys. Lett. B 30, 1650332 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    He, Y.F., Ma, W.P.: Two-party quantum key agreement based on four-particle GHZ states. Int. J. Quantum Inf. 14, 1650007 (2016)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189–3193 (2008)

    ADS  Article  Google Scholar 

  39. 39.

    He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  40. 40.

    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61802302, 61772418, 61472472) and the Basic Research Project of Natural Science of Shaanxi Province (Grant No. 2017JM6037).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ye-Feng He.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., Ma, W. Multiparty quantum secure direct communication immune to collective noise. Quantum Inf Process 18, 4 (2019). https://doi.org/10.1007/s11128-018-2119-z

Download citation

Keywords

  • Quantum cryptography
  • Quantum secure direct communication
  • Collective noise
  • Logical quantum state
  • Information leakage