Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal

Abstract

A scheme which aims to protect the quantum teleportation from correlated amplitude damping decoherence is proposed. Comparing with the results of uncorrelated amplitude damping noise, we find that the correlated effects enable to improve the fidelity with the given decoherence parameter. Moreover, we show that the combination of weak measurement and quantum measurement reversal could drastically enhance the fidelity in both uncorrelated and correlated amplitude damping noise. Our results extend the ability of weak measurement as a technique in various quantum information processes which are affected by correlated noise.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1993)

    ADS  Article  Google Scholar 

  3. 3.

    Ursin, R., et al.: Quantum teleportation across the Danube. Nature 430, 849 (2004)

    ADS  Article  Google Scholar 

  4. 4.

    Espoukeh, P., Pedram, P.: Quantum teleportation through noisy channels with multi-qubit GHZ states. Quantum Inf. Process. 13, 1789–1811 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Xiao, X., et al.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    ADS  Article  Google Scholar 

  7. 7.

    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    Google Scholar 

  8. 8.

    Li, M., et al.: Quantum entanglement: separability, measure, fidelity of teleportation, and distillation. Adv. Math. Phys. 2010, 301072 (2010)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theory 44, 2724–2742 (2002)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283, 3198–3201 (2010)

    ADS  Article  Google Scholar 

  11. 11.

    Cafaro, C., Loock, P.V.: Approximate quantum error correction for generalized amplitude damping errors. Phys. Rev. A 89, 022316 (2014)

    ADS  Article  Google Scholar 

  12. 12.

    Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)

    ADS  Article  Google Scholar 

  13. 13.

    D’Arrigo, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. New J. Phys. 9, 310 (2007)

    ADS  Article  Google Scholar 

  14. 14.

    Plenio, M.B., Virmani, S.: Spin chains and channels with memory. Phys. Rev. Lett. 99, 120504 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    D’Arrigo, A., Benenti, G., Falci, G., Macchiavello, C.: Classical and quantum capacities of a fully correlated amplitude damping channel. Phys. Rev. A 88, 042337 (2013)

    ADS  Article  Google Scholar 

  16. 16.

    Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effect. Rev. Mod. Phys. 86, 1203 (2014)

    ADS  Article  Google Scholar 

  17. 17.

    Xiao, X., Yao, Y., Li, Y.L., Xie, Y.M., Wang, X.H.: Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal. Quantum Inf. Process. 15, 3881–3891 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Koashi, M., Ueda, M.: Reversing measurement and probabilistic quantum error correction. Phys. Rev. Lett. 82, 2598–2601 (1999)

    ADS  Article  Google Scholar 

  19. 19.

    Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    ADS  Article  Google Scholar 

  20. 20.

    Kim, Y.S., et al.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)

    ADS  Article  Google Scholar 

  21. 21.

    Ashhab, S., Nori, F.: Control-free control:manipulating a quantum system using only a limited set of measurements. Phys. Rev. A 82, 062103 (2010)

    ADS  Article  Google Scholar 

  22. 22.

    Lee, J.C., et al.: Experimental demonstration of decoherence suppression by quantum measurement reversal. Opt. Express 19, 16309–16316 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    Li, Y.L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067–3077 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    ADS  Article  Google Scholar 

  25. 25.

    Li, Y.L., Yao, Y., Xiao, X.: Robust quantum state transfer between two superconducting qubits via partial measurement. Laser Phys. Lett. 13, 125202 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    Kim, Y.S., et al.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  27. 27.

    Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    Wang, Y.H., et al.: Super-quantum correlation and geometry for Bell-diagonal states with weak measurements. Quantum Inf. Process. 13, 283–297 (2014)

    ADS  Article  Google Scholar 

  29. 29.

    Xu, X.M., et al.: Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Inf. Process. 14, 4147–4162 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)

    ADS  Article  Google Scholar 

  31. 31.

    Arshed, N., Toor, A.H.: Entanglement-Assisted Capacities of Time-Correlated Amplitude-Damping Channel. arXiv:1307.5403 (2013)

Download references

Acknowledgements

This work is supported by the Funds of the National Natural Science Foundation of China under Grant No. 61765007. YL Li is supported by the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yan-Ling Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zu, C. & Wei, D. Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal. Quantum Inf Process 18, 2 (2019). https://doi.org/10.1007/s11128-018-2114-4

Download citation

Keywords

  • Quantum teleportation
  • Weak measurement
  • Correlated amplitude damping channel