Advertisement

Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal

  • Yan-Ling LiEmail author
  • Chuan-Jin Zu
  • Dong-Mei Wei
Article
  • 106 Downloads

Abstract

A scheme which aims to protect the quantum teleportation from correlated amplitude damping decoherence is proposed. Comparing with the results of uncorrelated amplitude damping noise, we find that the correlated effects enable to improve the fidelity with the given decoherence parameter. Moreover, we show that the combination of weak measurement and quantum measurement reversal could drastically enhance the fidelity in both uncorrelated and correlated amplitude damping noise. Our results extend the ability of weak measurement as a technique in various quantum information processes which are affected by correlated noise.

Keywords

Quantum teleportation Weak measurement Correlated amplitude damping channel 

Notes

Acknowledgements

This work is supported by the Funds of the National Natural Science Foundation of China under Grant No. 61765007. YL Li is supported by the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology.

References

  1. 1.
    Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Ursin, R., et al.: Quantum teleportation across the Danube. Nature 430, 849 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Espoukeh, P., Pedram, P.: Quantum teleportation through noisy channels with multi-qubit GHZ states. Quantum Inf. Process. 13, 1789–1811 (2014)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Xiao, X., et al.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  8. 8.
    Li, M., et al.: Quantum entanglement: separability, measure, fidelity of teleportation, and distillation. Adv. Math. Phys. 2010, 301072 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theory 44, 2724–2742 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283, 3198–3201 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Cafaro, C., Loock, P.V.: Approximate quantum error correction for generalized amplitude damping errors. Phys. Rev. A 89, 022316 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    D’Arrigo, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. New J. Phys. 9, 310 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Plenio, M.B., Virmani, S.: Spin chains and channels with memory. Phys. Rev. Lett. 99, 120504 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    D’Arrigo, A., Benenti, G., Falci, G., Macchiavello, C.: Classical and quantum capacities of a fully correlated amplitude damping channel. Phys. Rev. A 88, 042337 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effect. Rev. Mod. Phys. 86, 1203 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Xiao, X., Yao, Y., Li, Y.L., Xie, Y.M., Wang, X.H.: Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal. Quantum Inf. Process. 15, 3881–3891 (2016)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Koashi, M., Ueda, M.: Reversing measurement and probabilistic quantum error correction. Phys. Rev. Lett. 82, 2598–2601 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Kim, Y.S., et al.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Ashhab, S., Nori, F.: Control-free control:manipulating a quantum system using only a limited set of measurements. Phys. Rev. A 82, 062103 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Lee, J.C., et al.: Experimental demonstration of decoherence suppression by quantum measurement reversal. Opt. Express 19, 16309–16316 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Li, Y.L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067–3077 (2013)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Li, Y.L., Yao, Y., Xiao, X.: Robust quantum state transfer between two superconducting qubits via partial measurement. Laser Phys. Lett. 13, 125202 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Kim, Y.S., et al.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)CrossRefGoogle Scholar
  27. 27.
    Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Wang, Y.H., et al.: Super-quantum correlation and geometry for Bell-diagonal states with weak measurements. Quantum Inf. Process. 13, 283–297 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Xu, X.M., et al.: Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Inf. Process. 14, 4147–4162 (2015)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Arshed, N., Toor, A.H.: Entanglement-Assisted Capacities of Time-Correlated Amplitude-Damping Channel. arXiv:1307.5403 (2013)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information EngineeringJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations