Quantization and experimental realization of the Colonel Blotto game

Abstract

We present a quantum mechanical version of the Colonel Blotto game, where two players, Blotto and Enemy, collocate their soldiers (resources) sequentially in a finite number of territories. We analyse the representative classical cases of this game as well as the trivial case—which on its turn has no interest at all in the point of view of classical game theory—where, surprisingly, a player that could control a single parameter can win the game even if he/she is greatly outnumbered by his/her opponent. Besides the theoretical study we present an experimental realization of classical game by using linear optics circuits as well as a proposal of an experimental investigation of the quantized game. Finally, in order to check our quantization scheme we also present computer simulation results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Press, W.H., Dyson, F.J.: Iterated prisoner’s dilemma contains strategies that dominate any evolutionary opponent. Proc. Natl. Acad. Sci. 109(26), 10409 (2012)

    ADS  Article  Google Scholar 

  2. 2.

    von Neumann, J., Morgenstern, O.: The Theory of Games and Economic Behavior, 60th edn. Princeton University Press, Princeton (1944)

    Google Scholar 

  3. 3.

    Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Fra̧ckiewicz, P.: The ultimate solution to the quantum battle of the Sexes game, J. Phys. A 42(36) (2009)

  6. 6.

    Guo, H., Zhang, J., Koehler, G.J.: A survey of quantum games. Decis. Support Syst. 46(1), 318 (2008)

    Article  Google Scholar 

  7. 7.

    Challet, D., Zhang, Y.C.: Emergence of cooperation and organization in an evolutionary game. Physica A 246(3), 407 (1997)

    ADS  Article  Google Scholar 

  8. 8.

    de Ponte, M.A., Santos, A.C.: Adiabatic quantum games and phase-transition-like behavior between optimal strategies. Quantum Inf. Process. 17(6), 149 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Flitney, A.P., Abbott, D.: Quantum version of the Monty Hall problem. Phys. Rev. A 65, 062318 (2002)

    ADS  Article  Google Scholar 

  10. 10.

    Hogg, T., Harsha, P., Chen, K.Y.: Quantum auctions. Int. J. Quantum Inf. 5(05), 751 (2007)

    Article  Google Scholar 

  11. 11.

    Zeng, Q., Davis, B.R., Abbott, D.: Reverse auction: the lowest unique positive integer game. Fluctuation Noise Lett. 7(04), L439 (2007)

    Article  Google Scholar 

  12. 12.

    Makowski, M.: Transitivity versus intransitivity in decision making process—an example in quantum game theory. Phys. Lett. A 373, 2125 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Makowski, M., Piotrowski, E.W.: Transitivity of an entangled choice. J. Phys. A 44, 075301 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Flitney, A.P., Abbott, D.: Quantum two-and three-person duels. J. Opt. B 6(8), S860 (2004)

    ADS  Article  Google Scholar 

  15. 15.

    Schmidt, A.G.M., Paiva, M.M.: Quantum duel revisited. J. Phys. A 45(12), 125304 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Balthazar, W.F., Huguenin, J.A.O., Schmidt, A.G.M.: Simultaneous quantum duel. J. Phys. Soc. Jpn. 84(12), 124002 (2015)

    ADS  Article  Google Scholar 

  17. 17.

    Balthazar, W.F., Passos, M.H.M., Schmidt, A.G.M., Caetano, D.P., Huguenin, J.A.O.: Experimental realization of the quantum duel game using linear optical circuits. J. Phys. B 48(16), 165505 (2015)

    ADS  Article  Google Scholar 

  18. 18.

    Amengual, P., Toral, R.: Truels, or survival of the weakest. Comput. Sci. Eng. 8(5), 88 (2006)

    Article  Google Scholar 

  19. 19.

    Chowdhury, S.M., Kovenock, D., Sheremeta, R.M., Roman, M.: An experimental investigation of Colonel Blotto games. Econ. Theory 52(3), 833 (2013)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Gross, O., Wagner, R.: A continuous colonel blotto game. Tech. rep, RAND PROJECT AIR FORCE SANTA MONICA CA (1950)

  21. 21.

    Roberson, B.: The colonel blotto game. Econ. Theory 29(1), 1 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Roberson, B., Kvasov, D.: The non-constant-sum Colonel Blotto game. Econ. Theory 51(2), 397 (2012)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Hendricks, K., Weiss, A., Wilson, C.: The war of attrition in continuous time with complete information. Int. Econ. Rev. 663–680 (1988)

  24. 24.

    Hodler, R., Yektaş, H.: All-pay war. Games Econ. Behav. 74(2), 526 (2012)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Myerson, R.B.: Incentives to cultivate favored minorities under alternative electoral systems. Am. Polit. Sci. Rev. 87(4), 856 (1993)

    Article  Google Scholar 

  26. 26.

    Szentes, B., Rosenthal, R.W.: Three-object two-bidder simultaneous auctions: chopsticks and tetrahedra. Games Econ. Behav. 44(1), 114 (2003)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Golman, R., Page, S.E.: General Blotto: games of allocative strategic mismatch. Public Choice 138(3–4), 279 (2009)

    Article  Google Scholar 

  28. 28.

    Lu, J., Zhou, L., Kuang, L.M.: Linear optics implementation for quantum game with two players. Phys. Lett. A 330(1–2), 48 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Kolenderski, P., Sinha, U., Youning, L., Zhao, T., Volpini, M., Cabello, A., Laflamme, R., Jennewein, T.: Aharonov–Vaidman quantum game with a Young-type photonic qutrit. Phys. Rev. A 86(1), 012321 (2012)

    ADS  Article  Google Scholar 

  30. 30.

    Pinheiro, A.R.C., Souza, C.E.R., Caetano, D.P., Huguenin, J.A.O., Schmidt, A.G.M., Khoury, A.Z.: Vector Vortex implementation of a quantum game. J. Opt. Soc. Am. B 30(12), 3210 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    Borges, C.V.S., Hor-Meyll, M., Huguenin, J.A.O., Khoury, A.Z.: Bell-like inequality for the spin-orbit separability of a laser beam. Phys. Rev. A 82(3), 033833 (2010)

    ADS  Article  Google Scholar 

  32. 32.

    Kagalwala, K.H., Di Giuseppe, G., Abouraddy, A.F., Saleh, B.E.: Bell’s measure in classical optical coherence. Nat Photonics 7(1), 72 (2013)

    ADS  Article  Google Scholar 

  33. 33.

    Balthazar, W.F., Souza, C.E.R., Caetano, D.P., Galvão, E.F., Huguenin, J.A.O., Khoury, A.Z.: Tripartite nonseparability in classical optics. Opt. Lett. 41(24), 5797 (2016)

    ADS  Article  Google Scholar 

  34. 34.

    Milione, G., Nguyen, T.A., Leach, J., Nolan, D.A., Alfano, R.R.: Using the nonseparability of vector beams to encode information for optical communication. Opt. Lett. 40(21), 4887 (2015)

    ADS  Article  Google Scholar 

  35. 35.

    Souza, C.E.R., Borges, C.V.S., Khoury, A.Z., Huguenin, J.A.O., Aolita, L., Walborn, S.: Quantum key distribution without a shared reference frame. Phys. Rev. A 77(3), 032345 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    Balthazar, W.F., Caetano, D.P., Souza, C.E.R., Huguenin, J.A.O.: Using polarization to control the phase of spatial modes for application in quantum information. Braz. J. Phys. 44(6), 658 (2014)

    ADS  Article  Google Scholar 

  37. 37.

    Balthazar, W.F., Huguenin, J.A.O.: Conditional operation using three degrees of freedom of a laser beam for application in quantum information. J. Opt. Soc. Am. B 33(8), 1649 (2016)

    ADS  Article  Google Scholar 

  38. 38.

    da Silva, B.P., Leal, M.A., Souza, C.E.R., Galvão, E.F., Khoury, A.Z.: Spin-orbit laser mode transfer via a classical analogue of quantum teleportation. J. Phys. B 49(5), 055501 (2016)

    ADS  Article  Google Scholar 

  39. 39.

    Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286 (1951)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Gerrard, A., Burch, J.M.: Introduction to Matrix Methods in Optics. Courier Corporation (1994)

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Brazilian’s agencies CAPES, FAPERJ, CNPq and INCT—Quantum Information. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. G. M. Schmidt.

Appendices

Appendix A: \({{\hat{J}}}\) Operator for \(n=2\)

In this “Appendix” we show the important special case for the quantum Colonel Blotto game for two territories, namely \(n=2\). In order to obtain the entanglement operator \({\hat{J}}\) we need, in the first place, to write the operator \({\hat{A}}\). Choosing the sign of the first element of the second matrix to be positive and the second one to be negative yields,

$$\begin{aligned} {\hat{A}} = \left( \begin{array}{cc} 0 &{}\quad 1 \\ -\,1 &{}\quad 0 \\ \end{array} \right) \;\;\; \otimes \;\;\; \left( \begin{array}{cc} i &{}\quad 0 \\ 0 &{}\quad -\, i \\ \end{array} \right) , \end{aligned}$$
(24)

so, using Eq. (17)

$$\begin{aligned} {\hat{J}}= & {} \cos (\gamma /2)\; \left( \begin{array}{cccc} 1 &{}\quad 0&{}\quad 0&{}\quad 0 \\ 0 &{}\quad 1 &{}\quad 0&{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1\\ \end{array}\right) + i \sin (\gamma /2)\; \left( \begin{array}{cccc} 0 &{}\quad 0&{}\quad i&{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0&{}\quad -\,i\\ -\,i &{}\quad 0 &{}\quad 0&{}\quad 0\\ 0&{}\quad i&{}\quad 0&{}\quad 0\\ \end{array}\right) \nonumber \\= & {} \left( \begin{array}{cccc} \cos (\gamma /2) &{}\quad 0&{}\quad -\,\sin (\gamma /2)&{}\quad 0 \\ 0 &{}\quad \cos (\gamma /2) &{}\quad 0&{}\quad \sin (\gamma /2)\\ \sin (\gamma /2) &{}\quad 0 &{}\quad \cos (\gamma /2)&{}\quad 0\\ 0&{}\quad -\,\sin (\gamma /2)&{}\quad 0&{}\quad \cos (\gamma /2)\\ \end{array}\right) . \end{aligned}$$
(25)

This is the same matrix as \({\hat{R}}(\gamma /2)\otimes {\hat{\varPi }}_1+{\hat{R}}(-\gamma /2)\otimes {\hat{\varPi }}_2\), which corresponds to rotations in different battlefields, namely

$$\begin{aligned} \left( \begin{array}{cc} \cos (\gamma /2) &{}\quad -\,\sin (\gamma /2) \\ \sin (\gamma /2) &{}\quad \cos (\gamma /2) \\ \end{array} \right) \otimes \left( \begin{array}{cc} 1 &{}\quad 0 \\ 0 &{}\quad 0 \\ \end{array} \right) + \left( \begin{array}{cc} \cos (\gamma /2) &{}\quad \sin (\gamma /2) \\ -\,\sin (\gamma /2) &{}\quad \cos (\gamma /2) \\ \end{array} \right) \otimes \left( \begin{array}{cc} 0 &{}\quad 0 \\ 0 &{}\quad 1 \\ \end{array} \right) ,\nonumber \\ \end{aligned}$$
(26)

which is the same as Eq. (25). For the case maximally entanglement \(\gamma = \pi /2\) then,

$$\begin{aligned} {\hat{J}} = {\hat{R}}(\pi /4)\otimes {\hat{\varPi }}_1+{\hat{R}}(-\,\pi /4)\otimes {\hat{\varPi }}_2. \end{aligned}$$
(27)

Appendix B: Classical Nash equilibrium

In this “Appendix” we will illustrate our quantized version of Colonel Blotto game showing detailed calculations which lead to the results presented in Table 1. In this example Enemy chooses the strategy referring to Nash equilibrium and Blotto chooses an arbitrary strategy. We are considering the specific classical case with three battlefields, both players have six soldiers and they are indivisible. The strategy that achieves the classical Nash equilibrium is the mixed strategy composed by five pure strategies given by Table 1, each one with probability equal to 1 / 5.

Since all classical strategies commute with entanglement operator \({\hat{J}}\), the final state is,

$$\begin{aligned} \vert \psi _f \rangle = {\hat{U}}_B {\hat{U}}_E \vert \psi _i \rangle . \end{aligned}$$
(28)

Enemy acts first and he applies his strategy to the initial state,

$$\begin{aligned} {\hat{U}}_E \vert \psi _i \rangle = \sum _{j=1}^3 {\hat{R}}(\lambda _j^E)\otimes {\hat{\varPi }}_j \left( \frac{1}{\sqrt{2}} \left( \vert 0\rangle +\vert 1 \rangle \right) \otimes \frac{1}{\sqrt{3}}\sum _{k=1}^3 \vert T_k \rangle \right) , \end{aligned}$$
(29)

which yields

$$\begin{aligned} {\hat{U}}_E \vert \psi _i \rangle = \frac{1}{\sqrt{6}} \sum _{j=1}^3 \left( {\hat{R}}(\lambda _j^E) \left( \vert 0\rangle +\vert 1 \rangle \right) \otimes \vert T_j \rangle \right) , \end{aligned}$$
(30)

when the Enemy chooses the strategy \(s_1\) from Table 1—zero, four and two soldiers dispatched to battlefields one, two and three, respectively—the angles which will rotate the initial state are given by,

$$\begin{aligned} \lambda _1^E = 0 ; \qquad \lambda _2^E=-\frac{\pi }{4} \frac{4}{6}=-\frac{\pi }{6}; \qquad \lambda _3^E=-\frac{\pi }{4} \frac{2}{6}=-\frac{\pi }{12}, \end{aligned}$$
(31)

substituting the angles in Eq. (30) we obtain,

$$\begin{aligned} {\hat{U}}_E \vert \psi _i \rangle= & {} \frac{1}{\sqrt{6}} \left( \vert 0\rangle +\vert 1 \rangle \right) \otimes \vert T_1 \rangle +{\hat{R}}(-\frac{\pi }{6}) \left( \vert 0\rangle +\vert 1 \rangle \right) \otimes \vert T_2 \rangle )\nonumber \\&+\, {\hat{R}}\left( -\,\frac{\pi }{12}\right) \left( \vert 0\rangle +\vert 1 \rangle \right) \otimes \vert T_3 \rangle \end{aligned}$$
(32)

now Blotto applies an arbitrary strategy,

$$\begin{aligned} \displaystyle {\hat{U}}_B{\hat{U}}_E \vert \psi _i \rangle= & {} \frac{1}{\sqrt{6}} {\hat{R}}(\lambda _1^B) \left( \vert 0\rangle +\vert 1 \rangle \right) \otimes \vert T_1 \rangle \nonumber \\&+\,{\hat{R}}(\lambda _2^B-\frac{\pi }{6}) \left( \vert 0\rangle +\vert 1 \rangle \right) \otimes \vert T_2 \rangle )\nonumber \\&+\, {\hat{R}}(\lambda _3^B-\frac{\pi }{12}) \left( \vert 0\rangle +\vert 1 \rangle \right) \otimes \vert T_3 \rangle \end{aligned}$$
(33)

Now we apply the rotation matrix to the state \(\vert 0\rangle +\vert 1 \rangle \)

$$\begin{aligned} {\hat{R}}(\theta ) \left( \vert 0\rangle +\vert 1 \rangle \right) = \cos (\theta )\vert 0\rangle + \sin (\theta )\vert 1 \rangle \end{aligned}$$
(34)

Using the above equation and the pay-off definition we have,

$$\begin{aligned} \$^1_B= & {} \mathrm{sgn}\left( \frac{1}{6}\Vert \sin (\lambda _1^B) \Vert ^2 - \frac{1}{6} \right) + \mathrm{sgn}\left( \frac{1}{6} \left\| \sin \left( \lambda _2^B-\frac{\pi }{6}\right) \right\| ^2 - \frac{1}{6} \right) \nonumber \\&+\, \mathrm{sgn}\left( \frac{1}{6} \left\| \sin \left( \lambda _3^B-\frac{\pi }{12}\right) \right\| ^2 - \frac{1}{6} \right) . \end{aligned}$$
(35)

In the last equation we calculated Blotto’s pay-off when Enemy chooses the strategy \(s_1\). In order to investigate the Nash equilibrium we need to calculate the pay-off for all others strategies, namely (\(s_2\), \(s_3\), \(s_4\), \(s_5\)), and the procedure is analogue. Therefore, after we calculate all these pay-offs it is necessary to find the expected pay-off which is defined as the sum,

$$\begin{aligned} \$_B = \sum _{i=1}^5 p_i \$_B^i \end{aligned}$$
(36)

where \(\$_B^i\) is Blotto’s pay-off for each strategy \(s_i\) chosen by his enemy, and all of them have probability 1 / 5. The idea is to test if Blotto can win with an arbitrary strategy against the best classical strategy (which is the strategy related to Nash equilibrium). So we have for strategy \(s_2\),

$$\begin{aligned} \$ _B^2= & {} \mathrm{sgn}\left( \frac{1}{6}\left\| \sin \left( \lambda _1^B-\frac{\pi }{24}\right) \right\| ^2 - \frac{1}{6} \right) +\mathrm{sgn}\left( \frac{1}{6} \left\| \sin \left( \lambda _2^B-\frac{\pi }{24}\right) \right\| ^2 - \frac{1}{6} \right) \nonumber \\&+\,\mathrm{sgn}\left( \frac{1}{6} \left\| \sin \left( \lambda _3^B-\frac{\pi }{6}\right) \right\| ^2 - \frac{1}{6} \right) , \end{aligned}$$
(37)

strategy \(s_3\) gives a pay-off,

$$\begin{aligned} \$ _B^3= & {} \mathrm{sgn}\left( \frac{1}{6}\left\| \sin \left( \lambda _1^B-\frac{\pi }{12}\right) \right\| ^2 - \frac{1}{6} \right) +\mathrm{sgn}\left( \frac{1}{6} \left\| \sin \left( \lambda _2^B-\frac{\pi }{8}\right) \right\| ^2 - \frac{1}{6} \right) \nonumber \\&+\,\mathrm{sgn}\left( \frac{1}{6} \left\| \sin \left( \lambda _3^B-\frac{\pi }{24}\right) \right\| ^2 - \frac{1}{6} \right) , \end{aligned}$$
(38)

the fourth strategy \(s_4\),

$$\begin{aligned} \$ _B^4= & {} \mathrm{sgn}\left( \frac{1}{6}\left\| \sin \left( \lambda _1^B-\frac{\pi }{8}\right) \right\| ^2 - \frac{1}{6} \right) +\mathrm{sgn}\left( \frac{1}{6} \Vert \sin (\lambda _2^B) \Vert ^2 - \frac{1}{6} \right) \nonumber \\&+\,\mathrm{sgn}\left( \frac{1}{6} \left\| \sin \left( \lambda _3^B-\frac{\pi }{8}\right) \right\| ^2 - \frac{1}{6} \right) , \end{aligned}$$
(39)

and for the last one, \(s_5\), Blotto obtains

$$\begin{aligned} \$ _B^5= & {} \mathrm{sgn}\left( \frac{1}{6}\left\| \sin \left( \lambda _1^B-\frac{\pi }{6}\right) \right\| ^2 - \frac{1}{6} \right) +\mathrm{sgn}\left( \frac{1}{6} \left\| \sin \left( \lambda _2^B-\frac{\pi }{12}\right) \right\| ^2 - \frac{1}{6} \right) \nonumber \\&+\,\mathrm{sgn}\left( \frac{1}{6} \Vert \sin (\lambda _3^B) \Vert ^2 - \frac{1}{6} \right) \end{aligned}$$
(40)

Finally the expected pay-off is,

$$\begin{aligned} \$ _B = \frac{1}{5}\sum _{i=1}^5\$_B^i, \end{aligned}$$
(41)

using this final equation we plot the graphic in Fig. 5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maioli, A.C., Passos, M.H.M., Balthazar, W.F. et al. Quantization and experimental realization of the Colonel Blotto game. Quantum Inf Process 18, 10 (2019). https://doi.org/10.1007/s11128-018-2113-5

Download citation

Keywords

  • Quantum games
  • Optical circuits
  • Transverse modes
  • Polarization modes