Any quantum network is structurally controllable by a single driving signal


Control theory concerns with the questions if and how it is possible to drive the behavior of a complex dynamical system. A system is said to be controllable if we can drive it from any initial state to any desired state in finite time. For many complex networks, the precise knowledge of system parameters lacks. But, it is possible to make a conclusion about network controllability by inspecting its structure. Classical theory of structural controllability is based on the Lin’s structural controllability theorem, which gives necessary and sufficient conditions to conclude whether a network is structurally controllable. Due to this fundamental theorem, we may identify a minimum driver vertex set, whose control with independent driving signals is sufficient to make the whole system controllable. I show that Lin’s theorem does not apply to quantum networks, if local operations and classical communication between vertices are allowed. Any quantum network can be modified to be structurally controllable obeying a single driving vertex.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Liao, S.-K., Cai, W.-Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.-G., Yin, J., Shen, Q., Cao, Y., Li, Z.-P., Li, P.-Z., Chen, X.-W., Sun, L.-H., Jia, J.-J., Wu, J.-C., Jiang, X.-J., Wang, J.-F., Huang, Y.-M., Wang, Q., Zhou, Y.-L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.-A., Liu, N.-L., Wang, X.-B., Zhu, Z.-C., Lu, C.-Y., Shu, R., Peng, C.-Z., Wang, J.-Y., Pan, J.W.: Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017)

    ADS  Article  Google Scholar 

  2. 2.

    Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    Castelvecchi, D.: The quantum internet has arrived (and it hasnt). Nature 554, 289–292 (2018)

    ADS  Article  Google Scholar 

  4. 4.

    Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum Internet: From Communication to Distributed Computing! arXiv:1805.04360

  5. 5.

    Caleffi, M.: Optimal routing for quantum networks. IEEE Access 5, 22299–22312 (2017)

    Article  Google Scholar 

  6. 6.

    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  7. 7.

    Perseguers, S., Lewenstein, M., Acin, A., Cirac, J.I.: Quantum random networks. Nat. Phys. 6, 539–543 (2010)

    Article  Google Scholar 

  8. 8.

    Manzano, G., Galve, F., Giorgi, G.L., Hernndez-Garcia, E., Zambrini, R.: Synchronization, quantum correlations and entanglement in oscillator networks. Sci. Rep. 3, 1439 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    Acin, A., Cirac, I.J., Lewenstein, M.: Entanglement percolation in quantum networks. Nat. Phys. 3, 256–259 (2007)

    Article  Google Scholar 

  10. 10.

    Siomau, M.: Quantum entanglement percolation. J. Phys. B. At. Mol. Opt. Phys. 49, 175506 (2016)

    ADS  Article  Google Scholar 

  11. 11.

    Glaser, S.J., Boscain, U., Calarco, T., Koch, C.P., Kockenberger, W., Kosloff, R., Kuprov, I., Luy, B., Schirmer, S., Schulte-Herbruggen, T., Sugny, D., Wilhelm, F.K.: Training Schrdingers cat: quantum optimal control. Eur. Phys. J. D 69, 279 (2015)

    ADS  Article  Google Scholar 

  12. 12.

    Wang, X., Pemberton-Ross, P., Schirmer, S.G.: Symmetry and subspace controllability for spin networks with a single-node control. IEEE Trans. Autom. Control 57, 1945–1956 (2012)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Burgarth, D., Bose, S., Bruder, C., Giovannetti, V.: Local controllability of quantum networks. Phys. Rev A 79, 060305(R) (2009)

    ADS  Article  Google Scholar 

  14. 14.

    Lin, C.T.: Structural controllability. IEEE Trans. Autom. Control 19, 201–208 (1974)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Liu, Y.-Y., Barabasi, A.-L.: Control principles of complex systems. Rev. Mod. Phys. 88, 035006 (2016)

    ADS  Article  Google Scholar 

  16. 16.

    Gardiner, C.W., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, Heidelberg (2000)

    Google Scholar 

  17. 17.

    Siomau, M.: Structural complexity of quantum networks. AIP Conf. Proc. 1742, 030017 (2016)

    Article  Google Scholar 

  18. 18.

    Stelmachovic, P., Buzek, V.: Dynamics of open quantum systems initially entangled with environment: beyond the Kraus representation. Phys. Rev A 64, 062106 (2001)

    ADS  Article  Google Scholar 

  19. 19.

    See section 12 Cascaded Quantum Systems of Ref. [16] for details

Download references

Author information



Corresponding author

Correspondence to Michael Siomau.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siomau, M. Any quantum network is structurally controllable by a single driving signal. Quantum Inf Process 18, 1 (2019).

Download citation


  • Quantum networks
  • Controllability
  • Linear quantum dynamics