Skip to main content
Log in

Quantum games: a review of the history, current state, and interpretation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We review both theoretical and experimental developments in the area of quantum games since the inception of the subject circa 1999. We will also offer a narrative on the controversy that surrounded the subject in its early days, and how this controversy has affected the development of the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wiesner, S.: Conjugate coding. ACM SIGACT News Spec. Issue Cryptogr. 15, 77–78 (1983)

    MATH  Google Scholar 

  2. Ingarden, R.S.: Quantum information theory. Rep. Math. Phys. 10(1), 43–72 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Series on Information and the Natural Sciences. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  4. Feynman, R.: Simulating physics with computers. Int. J. Theoret. Phys. 21, 467–488 (1982)

    MathSciNet  Google Scholar 

  5. Deutsch, D.: Quantum theory, the Chruch–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    ADS  MATH  Google Scholar 

  6. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    ADS  Google Scholar 

  7. Bullock, S.S., O’Leary, D.P., Brennen, G.K.: Asymptotically optimal quantum circuits for \(d\)-level systems. Phys. Rev. Lett. 94, 230502 (2005)

    ADS  Google Scholar 

  8. Charles Bennett, G.B.: Quantum cryptography: public key distributions and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Barnett, S.: Quantum Information. Oxford Master Series in Physics. Oxford University Press, Oxford (2009)

    Google Scholar 

  10. Wilde, M.: Quantum Information Theory. Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  11. Miyake, A., Wadati, M.: Geometric strategy for the optimal quantum search. Phys. Rev. A 64, 042317 (2001)

    ADS  Google Scholar 

  12. Tzu, S.: The Art of War: The Denma Translation. Shambhala Library, Shambhala (2002)

    Google Scholar 

  13. Nash, J.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36, 48–49 (1950)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8(3), 457–459 (1941)

    MathSciNet  MATH  Google Scholar 

  15. Glicksberg, I.L.: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. In: Proceedings of the American Mathemtical Society, vol. 3 (1952)

    MathSciNet  MATH  Google Scholar 

  16. Binmore, K.: Playing for Real: A Text on Game Theory. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  17. Myerson, R.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge (1991)

    MATH  Google Scholar 

  18. Blaquiere, A.: Wave mechanics as a two-player game. In: Blaquire, M.A., Fer F. (eds.) Dynamical Systems and Microphysics. International Centre for Mechanical Sciences (Courses and Lectures), pp. 33–69, Springer, Berlin (1980)

    Google Scholar 

  19. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Bleiler, S.: Quantized poker, preprint: arXiv:0902.2196

  22. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272(5), 291–303 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Khan, F.S., Phoenix, S.: Mini-maximizing two qubit quantum computations. Quant. Inf. Process. 12, 3807–3819 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Sutton, B.: Computing the complete cs decomposition. Numer. Algorithm. 50, 33–65 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Khan, F.S., Humble, T.S.: Nash embedding and equilibrium in pure quantum states, arXiv:1801.02053 [quant-ph] (2018)

  26. Frackiewicz, P.: A new model for quantum games based on the marinattoweber approach. J. Phys. A Math. Theoret. 46(27), 275301 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Deng, X., Deng, Y., Liu, Q., Shi, L., Wang, Z.: Quantum games of opinion formation based on the marinatto-weber quantum game scheme. EPL (Europhys. Lett.) 114(5), 50012 (2016)

    ADS  Google Scholar 

  28. Samadi, A.H., Montakhab, A., Marzban, H., Owjimehr, S.: Quantum barrogordon game in monetary economics. Phys. A Stat. Mech. Appl. 489, 94–101 (2018)

    Google Scholar 

  29. Khan, F.S., Phoenix, S.: Gaming the quantum. Quant. Inf. Comput. 13, 231–244 (2013)

    MathSciNet  Google Scholar 

  30. van Enk, S.J., Pike, R.: Classical rules in quantum games. Phys. Rev. A 66, 024306 (2002)

    ADS  MathSciNet  Google Scholar 

  31. Aumann, R.J.: Subjectivity and correlation in randomized strategies. J. Math. Econom. 1(1), 67–96 (1974)

    MathSciNet  MATH  Google Scholar 

  32. Benjamin, S.C., Hayden, P.M.: Comment on quantum games and quantum strategies. Phys. Rev. Lett. 87, 069801 (2001)

    ADS  Google Scholar 

  33. Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47(14–15), 2543–2556 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Phys. Rev. A 64, 030301 (2001)

    ADS  Google Scholar 

  35. Johnson, N.F.: Playing a quantum game with a corrupted source. Phys. Rev. A 63, 020302 (2001)

    ADS  MathSciNet  Google Scholar 

  36. Iqbal, A., Toor, A.: Evolutionarily stable strategies in quantum games. Phys. Lett. A 280(5–6), 249–256 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Flitney, A.P., Abbott, D.: Quantum version of the Monty Hall problem. Phys. Rev. A 65, 062318 (2002)

    ADS  Google Scholar 

  38. Iqbal, A., Toor, A.H.: Quantum mechanics gives stability to a Nash equilibrium. Phys. Rev. A 65, 022306 (2002)

    ADS  MathSciNet  Google Scholar 

  39. Du, J., Li, H., Xu, X., Zhou, X., Han, R.: Entanglement enhanced multiplayer quantum games. Phys. Lett. A 302(5), 229–233 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Flitney, A.P., Abbott, D.: Quantum games with decoherence. J. Phys. A Math. Gen. 38(2), 449 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Iqbal, A., Weigert, S.: Quantum correlation games. J. Phys. A Math. Gen. 37(22), 5873 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Chen, J.-L., Kwek, L.C., Oh, C.H.: Noisy quantum game. Phys. Rev. A 65, 052320 (2002)

    ADS  Google Scholar 

  43. Nayak, A., Shor, P.: Bit-commitment-based quantum coin flipping. Phys. Rev. A 67, 012304 (2003)

    ADS  Google Scholar 

  44. Cleve, R., Hoyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: 19th IEEE Annual Conference on Computational Complexity, 2004. Proceedings, pp. 236–249, IEEE (2004)

  45. Fitzi, M., Gisin, N., Maurer, U.: Quantum solution to the Byzantine agreement problem. Phys. Rev. Lett. 87, 217901 (2001)

    ADS  Google Scholar 

  46. Kempe, J., Kobayashi, H., Matsumoto, K., Toner, B., Vidick, T.: Entangled games are hard to approximate. In: Proceedings of 49th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 447–456 (2008)

  47. Aharonov, D., Ta-Shma, A., Vazirani, U.V., Yao, A.C.: Quantum bit escrow. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC ’00 (New York, NY, USA), pp. 705–714, ACM (2000)

  48. Marriott, C., Watrous, J.: Quantum Arthur-Merlin games. Comput. Complex. 14, 122–152 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Chi-Chih Yao, A.: Quantum circuit complexity. In: Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science, SFCS ’93 (Washington, DC, USA), pp. 352–361, IEEE Computer Society (1993)

  50. Aumann, R.: Game Theory. Palgrave MacMillan, Basingstoke (1989)

    Google Scholar 

  51. Brandenburger, A.: Cooperative Game Theory, Lecture Notes

  52. Piotrowski, E., Sadkowski, J.: Quantum market games. Phys. A Stat. Mech. Appl. 312(1), 208–216 (2002)

    MathSciNet  MATH  Google Scholar 

  53. Piotrowski, E.W., Sadkowski, J., Syska, J.: Interference of quantum market strategies. Phys. A Stat. Mech. Appl. 318(3), 516–528 (2003)

    MathSciNet  MATH  Google Scholar 

  54. Mariantoni, M., Wang, H., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Photon shell game in three-resonator circuit quantum electrodynamics. Nat. Phys. 7(4), 287–293 (2011)

    Google Scholar 

  55. Quantum game theory. https://scholar.google.com.au/citations?user=wkfPcaQAAAAJ&hl=en. Accessed 12 March 2018

  56. Guo, H., Zhang, J., Koehler, G.J.: A survey of quantum games. Decis. Support Syst. 46(1), 318–332 (2008)

    Google Scholar 

  57. Shimamura, J., Zdemir, A.K., Morikoshi, F., Imoto, N.: Quantum and classical correlations between players in game theory. Int. J. Quant. Inf. 02(01), 79–89 (2004)

    MATH  Google Scholar 

  58. Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. USA 38, 886–893 (1952)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Partha Sarathi Dasgupta, E.M.: Commentary—physical sciences—mathematics: Debreus social equilibrium existence theorem. Proc. Natl. Acad. Sci. USA 112, 15769–16770 (2015)

    Google Scholar 

  60. Piotrowski, E.W., Sładkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42, 1089–1099 (2003)

    MathSciNet  MATH  Google Scholar 

  61. Zhang, P.E.A.: Quantum gambling based on Nash-equilibrium. NPJ Quant. Inf. 3, 24 (2017)

    ADS  Google Scholar 

  62. Bouyer, P., Brenguier, R., Markey, N., Ummels, M.: Pure Nash equilibria in concurrent deterministic games. Log. Methods Comput. Sci. 11(2) (2015)

  63. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. Theor. Comput. Sci. 386, 188–217 (2007)

    MathSciNet  MATH  Google Scholar 

  64. Zabaleta, O., Arizmendi, C.: Quantum games based communication protocols. J. Adv. Appl. Comput. Math. 4, 35–39 (2017)

    Google Scholar 

  65. Houshmand, M., Houshmand, M., Mashhadi, H.R.: Game theory based view to the quantum key distribution bb84 protocol. In: 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, pp. 332–336 (2010)

  66. Giannakis, K., Papalitsas, C., Kastampolidou, K., Singh, A., Andronikos, T.: Dominant strategies of quantum games on quantum periodic automata. Computation 3(4), 586–599 (2015)

    Google Scholar 

  67. Anand, N., Benjamin, C.: Do quantum strategies always win. Quant. Inf. Process. 14, 4027–4038 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Mishima, H.: Non-abelian strategies in quantum penny flip game. Progr. Theor. Exp. Phys. 2018(1), 013A04 (2018)

    MathSciNet  Google Scholar 

  69. Bao, N., Yunger Halpern, N.: Quantum voting and violation of arrow’s impossibility theorem. Phys. Rev. A 95, 062306 (2017)

    ADS  Google Scholar 

  70. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a network creation game. In: Proceedings of the Twenty-second Annual Symposium on Principles of Distributed Computing, PODC ’03 (New York, NY, USA), pp. 347–351, ACM (2003)

  71. Demaine, E.D., Hajiaghayi, M., Mahini, H., Zadimoghaddam, M.: The price of anarchy in network creation games. ACM Trans. Algorithms 8(2), 13:1–13:13 (2012)

    MathSciNet  MATH  Google Scholar 

  72. Scarpa, G.: Network games with quantum strategies. In: Quantum Communication and Quantum Networking. QuantumComm 2009. Lecture Notes of the Institute for Computer Sciences, Engineering, vol, Social Informatics and Telecommunications, vol. 36

  73. Khan, F., Elsokkary, N., Humble, T.: arXiv:1808.06926v2 [cs.GT], 2018

  74. Rai, A., Paul, G.: Strong quantum solutions in conflicting-interest bayesian games. Phys. Rev. A 96, 042340 (2017)

    ADS  Google Scholar 

  75. Brunner, N., Linden, N.: Connection between Bell nonlocality and Bayesian game theory. Nat. Commun. 4, 2057 (2013)

    ADS  Google Scholar 

  76. Harsanyi, J.C.: Games with incomplete information played by Bayesian players. Mgt. Sci. 14, 159–182 (1967)

    MathSciNet  MATH  Google Scholar 

  77. Cheon, T., Iqbal, A.: Bayesian Nash equilibria and Bell inequalities. J. Phys. Soc. Jpn. 77, 024801 (2008)

    ADS  Google Scholar 

  78. Fine, A.: Joint distributions, quantum correlations, and commuting observables. J. Math. Phys. 23, 1306–1310 (1982)

    ADS  MathSciNet  Google Scholar 

  79. Silman, J., Machnes, S., Aharon, N.: On the relation between Bell’s inequalites and nonlocal games. Phys. Lett. A 372, 3796–3800 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  80. Flitney, A., Schlosshauer, M., Chmid, C., Laskowski, W., Hollenberg, L.: Equivalence between Bell inequalities and quantum minority games. Phys. Lett. A 373, 521–524 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  81. Iqbal, A., Abbott, D.: Equivalence between Bell inequalities and quantum minority games. Phys. Lett. A 374, 3155–3163 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  82. LA Mura, P.: Correlated equilibria of classical strategic games with quantum signals. Int. J. Quant. Inf. 03(01), 183–188 (2005)

    MATH  Google Scholar 

  83. Brandenburger, A., Mura, P.L.: Team decision problems with classical and quantum signals. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 374, 2058 (2016)

    Google Scholar 

  84. Zhang, S.: Quantum strategic game theory. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12 (New York, NY, USA), pp. 39–59, ACM (2012)

  85. Auletta, V., Ferraioli, D., Rai, A., Scarpa, G., Winter, A.: Belief-invariant equilibria in games with incomplete information, CoRR, arXiv:1605.07896 (2016)

  86. Pappa, A., Kumar, N., Lawson, T., Santha, M., Zhang, S., Diamanti, E., Kerenidis, I.: Nonlocality and conflicting interest games. Phys. Rev. Lett. 114, 020401 (2015)

    ADS  Google Scholar 

  87. Melo-Luna, C., Susa, C., Ducuara, A., Barreiro, A., Reina, J.: Quantum locality in game strategy. Sci. Rep. 7, 44730 (2016)

    ADS  Google Scholar 

  88. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379–385 (1991)

    ADS  MathSciNet  Google Scholar 

  89. Guney, V., Hiller, M.: Bell inequalities from group actions: three parties and non-abelian groups. Phys. Rev. A 91, 052110 (2015)

    ADS  Google Scholar 

  90. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Birkhauser, Basel (1992)

    MATH  Google Scholar 

  91. Chang, M.-H.: Quantum Stochastics. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  92. Barry, Jennifer, Barry, Daniel T., Aaronson, S.: Quantum partially observable Markov decision processes. Phys. Rev. A 90, 032311 (2014)

    ADS  Google Scholar 

  93. Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. 39(10), 1095–1100 (1953)

    ADS  MathSciNet  MATH  Google Scholar 

  94. Solana, E., Vieille, N.: Stochastic games—perspective. In: Proceedings of the National Academy of Sciences, vol. 112 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  95. Johari, R.: Lecture Notes in Game Theory. preprint. Stanford University

  96. Nayyar, A., Gupta, A., Langbort, C., Basar, T.: Common information based Markov perfect equilibria for stochastic games with asymmetric information: finite games. IEEE Trans. Autom. Control 59, 3 (2014)

    MathSciNet  MATH  Google Scholar 

  97. Blackwell, D.: Discrete dynamic programming. Ann. Math. Stat. 33(2), 719–726 (1962)

    MathSciNet  MATH  Google Scholar 

  98. Hora, A., Obata, N.: Quantum Probability and Spectral Analysis of Graphs. Springer, Berlin (2007)

    MATH  Google Scholar 

  99. Gleason, A.: Measures on the closed subspace of a Hilbert space. J. Math. Mech. 6, 885–893 (1957)

    MathSciNet  MATH  Google Scholar 

  100. Bouten, V.B.L.M., Edward, S.: Bellman equations for optimal control of qubits. J. Phys. B At. Mol. Opt. Phys. 38(3) (2005)

    ADS  Google Scholar 

  101. Kurt Jacobs, H.W., Wang, X.: Coherent feedback that beats all measurement-based feedback protocols. New J. Phys. 16, 073036 (2014)

    Google Scholar 

  102. DiVincenzio, D.P.: The physical implementation of quantum computation. Fortschr. Phys 48, 771–783 (2000)

    Google Scholar 

  103. Pfaff, W., et al.: Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  104. Du, J., Li, H., Xu, X., Shi, M., Wu, J., Zhou, X., Han, R.: Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett 88, 137902 (2002)

    ADS  Google Scholar 

  105. Mitra, A., Sivapriya, K., Kumar, A.: Experimental implementation of a three qubit quantum game with corrupt source using nuclear magnetic resonance quantum information processor. J. Magn. Reson. 187, 306–313 (2007)

    ADS  Google Scholar 

  106. Cory, D., Price, M., Havel, T.F.: Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing. Phys. D Nonlinear Phenom. 120(1) (1998)

    ADS  Google Scholar 

  107. Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83(5), 1054–1057 (1999)

    ADS  Google Scholar 

  108. Zhang, P., Zhang, Y.-S., Huang, Y.-F., Peng, L., Li, C.-F., Guo, G.-C.: Optical realization of quantum gambling machine. EPL 82, 30002 (2008)

    MathSciNet  Google Scholar 

  109. Balthazar, W., Passos, M., Schmidt, A., Caetano, D., Huguenin, J.: Experiemntal realization of the quantum duel game using linear optical circuits. J. Phys. B Atom. Mol. Opt. Phys. 48, 165505 (2015)

    ADS  Google Scholar 

  110. Pinheiro, A.R.C., Souza, C., Caetano, D., Juguenin, J., Schmidt, A., Khoury, A.: Vector vortex implementaion of a quantum game. J. Opt. Soc. Am. B 30, 3210–3214 (2013)

    ADS  Google Scholar 

  111. Prevedel, R., Andre, S., Walther, P., Zeilinger, A.: Experimental realization of a quantum game on a one-way quantum computer. N. J. Phys. 9, 205 (2007)

    Google Scholar 

  112. Altepeter, J., Hall, M., Medic, M., Patel, M., Meyer, D., Kumar, P.: Experimental realization of a multi-player quantum game, OSA/IPNRA/NLO/SL (2009)

  113. Schmid, C., Flitney, A., Wieczorek, W., Kiesel, N., Weinfurter, H., Hollenberg, L.: Experiental implementation of a four-player quantum game. N. J. Phys. 12, 063031 (2010)

    Google Scholar 

  114. Zu, C., Wang, Y.X., Chang, X.-Y., Wei, Z.-H., Zhang, S.-Y., Duan, L.-M.: Experimental demonstration of quantum gain in a zero-sum game. N. J. Phys. 14, 033002 (2012)

    Google Scholar 

  115. Buluta, I.M., Fujiwara, S.: Quantum games in ion traps. Phys. Lett. A 358, 100–104 (2006)

    ADS  MATH  Google Scholar 

  116. Shuai, C., Mao-Fa, F., Jian-Bin, L., Xin-Wen, W., Xiao-Juan, Z.: A scheme for implementing quantum game in cavity QED. Chin. Phys. B 18, 894 (2009)

    ADS  Google Scholar 

  117. Debnath, S., et al.: Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63 (2016)

    ADS  Google Scholar 

  118. Hucul, D.: Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015)

    Google Scholar 

  119. Solmeyer, N., Linke, N.M., Figgatt, C., Landsman, K.A., Balu, R., Siopsis, G., Monroe, C.R.: Demonstration of Bayesian quantum game on an ion trap quantum computer. Quant. Sci. Technol. 3(4) (2018)

    ADS  Google Scholar 

  120. Chen, K., Hogg, T.: How well do people play a quantum Prisoner’s Dilemma? Quant. Inf. Process. 5, 43–67 (2006)

    MathSciNet  MATH  Google Scholar 

  121. Chen, K., Hogg, T.: Experiments with probabilistic quantum auctions. Quant. Inf. Process. 7, 139–152 (2008)

    MATH  Google Scholar 

  122. Schelling, T.C.: Arms and Influence. Yale University Press, New Haven (1966)

    Google Scholar 

  123. Zabaleta, O.G., Barrangú, J.P., Arizmendi, C.M.: Quantum game application to spectrum scarcity problems. Phys. A Stat. Mech. Appl. 466, 455–461 (2017)

    MathSciNet  Google Scholar 

  124. Challet, D., Zhang, Y.-C.: Emergence of cooperation and organization in an evolutionary game. Phys. A Stat. Mech. Appl. 246(3–4), 407–418 (1997)

    Google Scholar 

  125. Flitney, A.P., Hollenberg, L.C.L.: Multiplayer quantum minority game with decoherence. In: Fluctuations and Noise in Photonics and Quantum Optics III. International Society for Optics and Photonics 5842, 175–183 (2005)

  126. Solmeyer, N., Dixon, R., Balu, R.: Quantum routing games, arXiv preprint arXiv:1709.10500 (2017)

  127. Roughgarden, T.: On the severity of Braess’s paradox: designing networks for selfish users is hard. J. Comput. Syst. Sci. 72(5), 922–953 (2006)

    MathSciNet  MATH  Google Scholar 

  128. Hanauske, M., Bernius, S., Dugall, B.: Quantum game theory and open access publishing. Phys. A Stat. Mech. Appl. 382(2), 650–664 (2007)

    Google Scholar 

  129. de Sousa, P., Ramos, R.: Multiplayer quantum games and its application as access controller in architecture of quantum computers. Quant. Inf. Process. 7, 125–135 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy, Office of Science Advanced Scientific Computing Research and Early Career Research programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Shah Khan.

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F.S., Solmeyer, N., Balu, R. et al. Quantum games: a review of the history, current state, and interpretation. Quantum Inf Process 17, 309 (2018). https://doi.org/10.1007/s11128-018-2082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2082-8

Keywords

Navigation