Skip to main content
Log in

Quantum walks via quantum cellular automata

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Very much as its classical counterpart, quantum cellular automata are expected to be a great tool for simulating complex quantum systems. Here we introduce a partitioned model of quantum cellular automata and show how it can simulate, with the same amount of resources (in terms of effective Hilbert space dimension), various models of quantum walks. All the algorithms developed within quantum walk models are thus directly inherited by the quantum cellular automata. The latter, however, has its structure based on local interactions between qubits, and as such it can be more suitable for present (and future) experimental implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that the space \(\mathscr {H}_G\) is not given by the tensor product of a space associated to the edges and another space associated to the vertices.

  2. Note that since the evolution for t time steps is given by \(U^t\), then the operator X can be absorbed in the coin operator by suitably applying corrections on the initial and final state: \(U^t =X \cdot (S_I\cdot CX)^t X^{-1}\).

  3. Here again the action of the third tiling can be absorbed in the action of the first one, plus modifications in the initial and final state. We, however, present the translation with three tilings for clarity reasons.

References

  1. Spitzer, F.: Principles of Random Walk, 2nd edn. Springer Science+Business Media, LLC, Berlin (1976)

    Book  MATH  Google Scholar 

  2. Singal, V.: Beyond the Randow Walk. Oxford University Press, Oxford (2004)

    Google Scholar 

  3. Shiller, R.J., Perron, P.: Testing the random walk hypothesis: power versus frequency of observation. Econ. Lett. 18(4), 381 (1985). https://doi.org/10.1016/0165-1765(85)90058-8

    Article  MATH  Google Scholar 

  4. Fouss, F., Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19(3), 355 (2007). https://doi.org/10.1109/TKDE.2007.46

    Article  Google Scholar 

  5. Wang, F., Landau, D.P.: Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050 (2001). https://doi.org/10.1103/PhysRevLett.86.2050

    Article  ADS  Google Scholar 

  6. Jones, R.A.: Soft Condensed Matter, vol. 6. Oxford University Press, Oxford (2002)

    Google Scholar 

  7. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993). https://doi.org/10.1103/PhysRevA.48.1687

    Article  ADS  Google Scholar 

  8. Molfetta, G.D., Prez, A.: Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New J. Phys. 18(10), 103038 (2016). https://doi.org/10.1088/1367-2630/18/10/103038

    Article  Google Scholar 

  9. Arrighi, P., Facchini, S., Forets, M.: Quantum walking in curved spacetime. Quantum Inf. Process. 15(8), 3467 (2016). https://doi.org/10.1007/s11128-016-1335-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Portugal, R.: Quantum Walks and Search Algorithm. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  11. Szegedy, M.: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society, Washington, DC, USA, FOCS’04, pp. 32–41 (2004). https://doi.org/10.1109/FOCS.2004.53

  12. Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantum walk model. Quantum Inf. Process. 15(1), 85 (2016). https://doi.org/10.1007/s11128-015-1149-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Portugal, R., de Oliveira, M.C., Moqadam, J.K.: Staggered quantum walks with Hamiltonians. Phys. Rev. A 95, 012328 (2017). https://doi.org/10.1103/PhysRevA.95.012328

    Article  ADS  MathSciNet  Google Scholar 

  14. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009). https://doi.org/10.1103/PhysRevLett.102.180501

    Article  ADS  MathSciNet  Google Scholar 

  15. Childs, A.M., Gosset, D., Webb, Z.: Universal computation by multi-particle quantum walk. Science 339, 791 (2013). https://doi.org/10.1126/science.1229957

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010). https://doi.org/10.1103/PhysRevLett.104.100503

    Article  Google Scholar 

  17. Dür, W., Raussendorf, R., Kendon, V.M., Briegel, H.J.: Quantum walks in optical lattices. Phys. Rev. A 66, 052319 (2002). https://doi.org/10.1103/PhysRevA.66.052319

    Article  ADS  Google Scholar 

  18. Wang, K.M.: Physical Implementation of Quantum Walks. Springer, Berlin (2013)

    Google Scholar 

  19. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  20. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

  21. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1996)

    Google Scholar 

  22. Nandi, S., Kar, B.K., Chaudhuri, P.P.: Theory and applications of cellular automata in cryptography. IEEE Trans. Comput. 43(12), 1346 (1994). https://doi.org/10.1109/12.338094

    Article  MathSciNet  Google Scholar 

  23. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 56, 1505 (1986). https://doi.org/10.1103/PhysRevLett.56.1505

    Article  ADS  Google Scholar 

  24. Green, D.G.: Cellular automata models in biology. Math. Comput. Model. 13(6), 69 (1990). https://doi.org/10.1016/0895-7177(90)90010-K

    Article  MathSciNet  Google Scholar 

  25. Grössing, G., Zeilinger, A.: Quantum cellular automata. Complex Syst. 2(2), 197 (1988). http://www.complex-systems.com/abstracts/v02_i02_a04/

  26. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5), 551 (1996). https://doi.org/10.1007/BF02199356

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Wiesner, K.: Quantum Cellular Automata, pp. 2351–2360. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1800-9_146

    Google Scholar 

  28. Schumacher, B., Werner, R.F.: Reversible quantum cellular automata, arXiv preprint arXiv:quant-ph/0405174 (2004)

  29. Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically universal. Nat. Comput. 11(1), 13 (2012). https://doi.org/10.1007/s11047-011-9277-6

    Article  MathSciNet  MATH  Google Scholar 

  30. Boixo, S., Rønnow, T.F., Isakov, S.V., Wang, Z., Wecker, D., Lidar, D.A., Martinis, J.M., Troyer, M.: Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218 (2014). https://doi.org/10.1038/nphys2900

    Article  Google Scholar 

  31. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242 (2017). https://doi.org/10.1038/nature23879

    Article  ADS  Google Scholar 

  32. Foxen, B., Mutus, J.Y., Lucero, E., Graff, R., Megrant, A., Chen, Y., Quintana, C., Burkett, B., Kelly, J., Jeffrey, E., Yang, Y., Yu, A., Arya, K., Barends, R., Chen, Z., Chiaro, B., Dunsworth, A., Fowler, A., Gidney, C., Giustina, M., Huang, T., Klimov, P., Neeley, M., Neill, C., Roushan, P., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Martinis, J.M.: Qubit compatible superconducting interconnects. Quantum Sci. Technol. 3(1), 014005 (2018). https://doi.org/10.1088/2058-9565/aa94fc

    Article  ADS  Google Scholar 

  33. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982). https://doi.org/10.1038/299802a0

    Article  ADS  MATH  Google Scholar 

  34. Toffoli, T., Margolus, N.: Cellular Automata Machines. Series in Scientific Computation. MIT Press, Cambridge (1987)

    MATH  Google Scholar 

  35. Pérez-Delgado, C.A., Cheung, D.: Local unitary quantum cellular automata. Phys. Rev. A 76, 032320 (2007). https://doi.org/10.1103/PhysRevA.76.032320

    Article  ADS  MathSciNet  Google Scholar 

  36. Watrous, J.: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp. 528–537 (1995). https://doi.org/10.1109/SFCS.1995.492583

  37. Philipp, P., Portugal, R.: Exact simulation of coined quantum walks with the continuous-time model. Quantum Inf. Process. 16(1), 14 (2016). https://doi.org/10.1007/s11128-016-1475-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Gross, D., Nesme, V., Vogts, H., Werner, R.F.: Index theory of one dimensional quantum walks and cellular automata. Commun. Math. Phys. 310(2), 419 (2012). https://doi.org/10.1007/s00220-012-1423-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Portugal, R., Boettcher, S., Falkner, S.: One-dimensional coinless quantum walks. Phys. Rev. A 91, 052319 (2015). https://doi.org/10.1103/PhysRevA.91.052319

    Article  ADS  Google Scholar 

  40. Portugal, R.: Staggered quantum walks on graphs. Phys. Rev. A 93, 062335 (2016). https://doi.org/10.1103/PhysRevA.93.062335

    Article  ADS  MathSciNet  Google Scholar 

  41. Portugal, R., Fernandes, T.D.: Quantum search on the two-dimensional lattice using the staggered model with Hamiltonians. Phys. Rev. A 95, 042341 (2017). https://doi.org/10.1103/PhysRevA.95.042341

    Article  ADS  Google Scholar 

  42. Khatibi Moqadam, J., de Oliveira, M.C., Portugal, R.: Staggered quantum walks with superconducting microwave resonators. Phys. Rev. B 95, 144506 (2017). https://doi.org/10.1103/PhysRevB.95.144506

    Article  ADS  Google Scholar 

  43. Ahlbrecht, A., Alberti, A., Meschede, D., Scholz, V.B., Werner, A.H., Werner, R.F.: Molecular binding in interacting quantum walks. New J. Phys. 14(7), 073050 (2012). https://doi.org/10.1088/1367-2630/14/7/073050

    Article  ADS  Google Scholar 

  44. Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum cellular automaton theory of light. Ann. Phys. 368, 177 (2016). https://doi.org/10.1016/j.aop.2016.02.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Thirring quantum cellular automaton. Phys. Rev. A 97, 032132 (2018). https://doi.org/10.1103/PhysRevA.97.032132

    Article  ADS  Google Scholar 

  46. Bisio, A., D’Ariano, G.M., Tosini, A.: Quantum field as a quantum cellular automaton: the Dirac free evolution in one dimension. Ann. Phys. 354, 244 (2015). https://doi.org/10.1016/j.aop.2014.12.016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467 (1982). https://doi.org/10.1007/BF02650179

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Osvaldo J. Farias for various discussions on the topic of quantum cellular automata. We acknowledge financial support from the National Institute for Science and Technology of Quantum Information (INCT-IQ/CNPq, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro C. S. Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, P.C.S., Portugal, R. & de Melo, F. Quantum walks via quantum cellular automata . Quantum Inf Process 17, 226 (2018). https://doi.org/10.1007/s11128-018-1983-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1983-x

Keywords

Navigation