Skip to main content
Log in

Geometric structure of quantum resources for Bell-diagonal states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Two-qubit Bell-diagonal states can be depicted as a tetrahedron in three dimensions. We investigate the geometric structure of quantum resources, including coherence and quantum discord, in the tetrahedron. The ordering of different resources measures is a common problem in resource theories, and which measure should be chosen to investigate the structure of resources is still an open question. We consider the geometric structure of quantum resources which is not affected by the choice of measure. Our work provides a complete structure of coherence and quantum discord for Bell-diagonal states. The pictorial approach also indicates how to explore the structure of resources even when we do not have consistent measure of a concrete quantum resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2002)

    Article  ADS  MATH  Google Scholar 

  6. Streltsov, A., Adesso, G., Plenio, M.B.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  Google Scholar 

  7. Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)

    Article  ADS  Google Scholar 

  8. Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Aćn, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

  9. Altintas, F.: Geometric measure of quantum discord in non-Markovian environments. Opt. Commun. 283, 5264 (2010)

    Article  ADS  Google Scholar 

  10. Yeo, Y., An, J.H., Oh, C.H.: Non-Markovian effects on quantum-communication protocols. Phys. Rev. A 82, 032340 (2010)

    Article  ADS  Google Scholar 

  11. Bellomo, B., Franco, R.L., Compagno, G.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 85, 024302 (2012)

    Article  Google Scholar 

  12. Li, Y., Luo, B., Guo, H.: Entanglement and quantum discord dynamics of two atoms under practical feedback control. Phys. Rev. A 84, 012316 (2011)

    Article  ADS  Google Scholar 

  13. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  14. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  15. Bu, K.F., Fan, H., Pati, A.K., Wu, J.: Resource Theory of Special Antiunitary Asymmetry (2016). arXiv:1610.09646

  16. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum Coherence as a Resource. Rev. Mod. Phys. 89, 041003 (2017)

  17. Shi, H.L., Liu, S.Y., Wang, X.H., Yang, W.L., Fan, H.: Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  20. Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  22. Lang, M.D., Caves, C.M.: Quantum discord and the geometry of Bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)

    Article  ADS  Google Scholar 

  23. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  24. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  26. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  27. Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)

    Article  ADS  Google Scholar 

  28. Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)

    Article  ADS  Google Scholar 

  29. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)

    Article  ADS  Google Scholar 

  30. Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)

    Article  ADS  Google Scholar 

  31. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  32. Fano, U.: Pairs of two-level systems. Rev. Mod. Phys. 55, 855 (1983)

    Article  ADS  Google Scholar 

  33. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  34. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Hai-Long Shi and Guo-Guo Xin for their valuable discussions. This work was supported by the NSFC (Grant Nos. 11775177, 11647057, 11705146), the Special Research Funds of Shaanxi Province Department of Education (No. 16JK1759), Northwest University Scientific Research Funds (No. 15NW26) and the Double First-Class University Construction Project of Northwest University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Yuan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, JX., Su, YL., Liu, SY. et al. Geometric structure of quantum resources for Bell-diagonal states. Quantum Inf Process 17, 184 (2018). https://doi.org/10.1007/s11128-018-1950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1950-6

Keywords

Navigation