Skip to main content
Log in

Entropic uncertainty relation in a two-qutrit system with external magnetic field and Dzyaloshinskii–Moriya interaction under intrinsic decoherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we explore the dynamic behaviors of entropic uncertainty relation in a two-qutrit system which is in the presence of external magnetic field and Dzyaloshinskii–Moriya (DM) interaction under intrinsic decoherence. The effects of the isotropic bilinear interaction, the external magnetic field, the DM interaction strength, as well as the intrinsic decoherence on the entropic uncertainty relation have been demonstrated in detail. Compared with previous results, our results show that, controlling the isotropic bilinear interaction parameter J, the external magnetic field strength \(B_{0}\), the DM interaction parameter D can result in inflation of the uncertainty, while increasing the intrinsic decoherence parameter can lift the uncertainty of the measurement. In particularly, under certain conditions (e.g., parameters J, \(B_{0}\) and D are large enough), the entropic uncertainty will ultimately tend to a stable value and be immune to decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heisenberg, W.: The actual content of quantum theoretical kinematics and mechanics. Z. Phys. 43, 172 (1927)

    Article  ADS  MATH  Google Scholar 

  2. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  3. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett 50, 631C633 (1983)

    Article  MathSciNet  Google Scholar 

  4. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  5. Renes, J.M., Boileau, J.C.: Physical underpinnings of privacy. Phys. Rev. A 78, 032335 (2008)

    Article  ADS  Google Scholar 

  6. Renes, J.M., Boileau, J.C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)

    Article  ADS  Google Scholar 

  7. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys 6, 659C662 (2010)

    Article  Google Scholar 

  8. Prevedel, R., Hamel, D.R., Colbeck, R., Fisher, K., Resch, K.J.: Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nat. Phys. 7, 757 (2011)

    Article  Google Scholar 

  9. Li, C.F., Xu, J.S., Xu, X.Y., Li, K., Guo, G.C.: Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 7, 752 (2011)

    Article  Google Scholar 

  10. Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)

    Article  ADS  Google Scholar 

  12. Coles, P.J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210504 (2012)

    Article  Google Scholar 

  13. Hu, M.L., Fan, H.: Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A 87, 022314 (2013)

    Article  ADS  Google Scholar 

  14. Feng, J., Zhang, Y.Z., Gould, M.D., Fan, H.: Entropic uncertainty relations under the relativistic motion. Phys. Rev. B 726, 527–532 (2013)

    MATH  Google Scholar 

  15. Hu, Y.D., Zhang, S.B., Wang, D., Ye, L.: Entropic uncertainty relation under dissipative environments and its steering by local non-unitary operations. Int. J. Theor. Phys. 55, 4641 (2016)

    Article  MATH  Google Scholar 

  16. Wang, D., Huang, A.J., Ming, F., Sun, W.Y., Liu, H.P., Liu, C.C., Ye, L.: Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field. Laser Phys. Lett. 14, 065203 (2017)

    Article  ADS  Google Scholar 

  17. Xiao, Y.L., Jing, N.H., Li-Jost, X.Q.: Uncertainty under quantum measures and quantum memory. Quantum. Inf. Pro. 16, 104 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, A.J., Shi, J.D., Wang, D., Ye, L.: Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quantum Inf. Process. 16, 46 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Zhang, J., Zhang, Y., Yu, C.S.: Entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. Sci. Rep. 5, 11701 (2015)

    Article  ADS  Google Scholar 

  20. Zhang, Y.L., Fang, M.F., Kuang, G.D., Zhou, Q.P.: Reducing quantum-memory-assisted entropic uncertainty by weak measurement and weak measurement reversal. Int. J. Quantum Inf. 13, 1550037 (2015)

    Article  MATH  Google Scholar 

  21. Yao, C.M., Chen, Z.H., Ma, Z.G., Severini, S.: Serafini, A: entanglement and discord assisted entropic uncertainty relations under decoherence. Sci. China 57, 1703–1711 (2014)

    Article  Google Scholar 

  22. Huang, A.J., Wang, D., Wang, J.M., Shi, J.D., Sun, W.Y., Ye, L.: Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field. Quantum Inf. Process. 16, 204 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Wang, D., Ming, F., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame. Laser Phys. Lett. 14, 055205 (2017)

    Article  ADS  Google Scholar 

  24. Zheng, X., Zhang, G.F.: The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski–Moriya interaction. Quantum. Inf. Pro. 16, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Walborn, S.P., Lemelle, D.S., Almeida, M.P., Ribeiro, P.H.S.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)

    Article  ADS  Google Scholar 

  26. Bourennane, M., Karlsson, A., Bjrk, G.: Quantum key distribution using multilevel encoding. Phys. Rev. A 64, 012306 (2001)

    Article  ADS  Google Scholar 

  27. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  28. Durt, T., Cerf, N.J., Gisin, N., Zukowski, M.: Security of quantum key distribution with entangled B qutrits. Phys. Rev. A 67, 012311 (2003)

    Article  ADS  Google Scholar 

  29. Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solid. 4, 241–255 (1958)

    Article  ADS  Google Scholar 

  30. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    Article  ADS  Google Scholar 

  31. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)

    Article  ADS  Google Scholar 

  32. Xu, J.B., Zou, X.B.: Dynamic algebraic approach to the system of a three-level atom in the configuration. Phys. Rev. A 60, 4743 (1999)

    Article  ADS  Google Scholar 

  33. Liu, B.Q., Shao, B., Zou, J.: Tripartite states Bell-nonlocality sudden death with intrinsic decoherence. Phys. Lett. A 374, 1970–1974 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Xu, Z.Y., Yang, W.L., Feng, M.: Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 86, 012113 (2012)

    Article  ADS  Google Scholar 

  35. Riccardi, A., Macchiavello, C., Maccone, L.: Tight entropic uncertainty relations for systems with dimension three to five. Phys. Rev. A 95, 032109 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. Man’ko, V.I., Marmo, G., Porzio, A., Solimeno, S., Ventriglia, F.: Homodyne estimation of quantum state purity by exploiting the covariant uncertainty relation. Phys. Scr. 83, 045001 (2011)

    Article  ADS  MATH  Google Scholar 

  37. Pati, A.K., Wilde, M.M., Devi, A.R.U., Rajagopal, A.K.: Sudha: Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86, 042105 (2012)

    Article  ADS  Google Scholar 

  38. Hu, M.L., Fan, H.: Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A 88, 014105 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11747107 and 11374096), the Natural Science Foundation of Hunan Province (Grant No. 2017JJ3346), the Scientific Research Project of Hunan Province Department of Education (Grant No. 16C0134), the Project of Science and Technology Plan of Changsha (K1705022) and the Start-up Funds for Talent Introduction and Scientific Research of Changsha University 2015 (Grant No. SF1504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-neng Guo.

Appendix A

Appendix A

In this Appendix, we give the explicit analytic forms of the entropic uncertainty Eq.(10) and its lower bound Eq.(11) in the text. If one chooses two of the spin-1 observables \(S_{x}\) and \(S_{z}\) whose eigenbases correspond to \((1/2,\sqrt{2}/2,1/2)^\mathrm{{T}}\), \((1/2,-\sqrt{2}/2,1/2)^\mathrm{{T}}\) and \((-\sqrt{2}/2,0,\sqrt{2}/2)^\mathrm{{T}}\) , as well as \((1,0,0)^\mathrm{{T}}\), \((0,1,0)^\mathrm{{T}}\) and \((0,0,1)^\mathrm{{T}}\), respectively, to perform on qutrit A. The post-measurement states \(\rho _{X|B}=\sum _{X}(|\phi _{X}\rangle \langle \phi _{X}|\otimes I)\rho _{AB}(|\phi _{X}\rangle \langle \phi _{X}|\otimes I)\) have the forms, respectively,

$$\begin{aligned} \rho (S_{x}|B)= & {} \left( \begin{array}{ c c c c c c c c c c l r } \frac{19+2M}{168} &{} 0 &{} 0 &{} 0 &{} \frac{\eta \nu }{84} &{} \frac{1}{84\Delta }N^{*} &{} \frac{2M-1}{168} &{} 0 &{} 0\\ \\ 0 &{} \frac{16+\alpha -3M}{168} &{} -\frac{1}{168\Delta }E^{*} &{} \frac{\eta ^{*} \nu ^{*}}{84}&{} 0 &{} 0 &{} 0 &{} \frac{8-3\alpha +M}{168} &{} +\frac{1}{56\Delta }E^{*}\\ \\ 0 &{}-\frac{1}{168\Delta }E &{} \frac{21-\alpha }{168} &{} \frac{1}{84\Delta }N &{} 0 &{} 0 &{} 0 &{} \frac{1}{56\Delta }E &{} \frac{3\alpha -7}{168}\\ \\ 0 &{} \frac{\eta \nu }{84} &{} \frac{1}{84\Delta }N^{*} &{} \frac{9+2M}{84} &{} 0 &{} 0 &{} 0 &{} \frac{\eta \nu }{84} &{} \frac{1}{84\Delta }N^{*} \\ \\ \frac{\eta ^{*} \nu ^{*}}{84} &{} 0 &{} 0 &{} 0 &{} \frac{12-\alpha -M}{84} &{} \frac{1}{84\Delta }E^{*} &{} \frac{\eta ^{*} \nu ^{*}}{84} &{} 0 &{} 0\\ \\ \frac{1}{84\Delta }N &{} 0 &{} 0 &{} 0 &{} \frac{1}{84\Delta }E &{} \frac{7+\alpha }{84} &{} \frac{1}{84\Delta }N &{} 0 &{} 0\\ \\ \frac{2M-1}{168} &{} 0 &{} 0&{} 0 &{} \frac{\eta \nu }{84} &{} \frac{1}{84\Delta }N^{*} &{} \frac{19+2M}{168} &{} 0 &{} 0\\ \\ 0 &{} \frac{8-3\alpha +M}{168} &{} \frac{1}{56\Delta }E^{*} &{} \frac{\eta ^{*} \nu ^{*}}{84} &{} 0 &{} 0 &{} 0 &{} \frac{16+\alpha -3M}{168} &{} -\frac{1}{168\Delta }E^{*}\\ \\ 0 &{} \frac{1}{56\Delta }E &{} \frac{3\alpha -7}{168} &{} \frac{1}{84\Delta }N &{} 0 &{} 0 &{} 0 &{} -\frac{1}{168\Delta }E &{} \frac{21-\alpha }{168}\\ \\ \end{array} \right) ,\nonumber \\ \end{aligned}$$
(A1)
$$\begin{aligned} \rho (S_{z}|B)= & {} \frac{\alpha }{21}(|00\rangle \langle 00|+|12\rangle \langle 12|+|21\rangle \langle 21|)\nonumber \\&+\,\frac{5-\alpha }{21}(|02\rangle \langle 02|+|11\rangle \langle 11|+|20\rangle \langle 20|)\nonumber \\&+\,\frac{1}{21}(2-M)|01\rangle \langle 01|+\frac{1}{21}(2+M)|10\rangle \langle 10|+\frac{2}{21}|22\rangle \langle 22| \end{aligned}$$
(A2)

where \(M=\eta \epsilon +\eta ^{*}\epsilon ^{*}\),

$$\begin{aligned} N= & {} \varepsilon _{-} \chi _{-}+\varepsilon _{+} \mu _{+},\\ E= & {} \varepsilon _{-} \mu _{-}+\varepsilon _{+} \chi _{+}. \end{aligned}$$

According to Eq.(2), the left hand and the right hand of the entropic uncertainty relation reduce to

$$\begin{aligned} U= & {} \frac{1}{21}\left[ \log _{2}{\frac{(49-M^2)^{14}}{20502297788(5-\alpha ) ^{15}(4-M^2)^{2}}}+6\alpha Arc\tanh \left( 1-\frac{2\alpha }{5}\right) \right. \nonumber \\&\left. +\,4M Arc \tanh \left( \frac{M}{7}\right) -2M Arc\tanh \left( \frac{M}{2}\right) \right] \nonumber \\&-\,\sum _{i}\omega _{i}\log _{2}\omega _{i} \end{aligned}$$
(A3)
$$\begin{aligned} U_{b}= & {} 1+\frac{1}{21}\left[ (7-M)\log _{2}{(7-M)}+(7+M)\log _{2}{(7+M)} -7\log _{2}{1323}\right] \nonumber \\&-\,\sum _{i}\lambda _{i}\log _{2}\lambda _{i}. \end{aligned}$$
(A4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Yn., Fang, Mf. & Zeng, K. Entropic uncertainty relation in a two-qutrit system with external magnetic field and Dzyaloshinskii–Moriya interaction under intrinsic decoherence. Quantum Inf Process 17, 187 (2018). https://doi.org/10.1007/s11128-018-1945-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1945-3

Keywords

Navigation