Quantum prisoners’ dilemma under enhanced interrogation

Abstract

In the quantum version of prisoners’ dilemma, each prisoner is equipped with a single qubit that the interrogator can entangle. We enlarge the available Hilbert space by introducing a third qubit that the interrogator can entangle with the other two. We discuss an enhanced interrogation technique based on tripartite entanglement and analyze Nash equilibria. We show that for tripartite entanglement approaching a W-state, we calculate the Nash equilibria numerically and show that they coincide with the Pareto-optimal choice where both prisoners cooperate. Upon continuous variation between a W-state and a pure bipartite entangled state, the game is shown to have a surprisingly rich structure. The role of bipartite and tripartite entanglement is explored to explain that structure. As an application, we consider an evolutionary game based on our quantum game with a network of agents on a square lattice with periodic boundary conditions and show that the strategy corresponding to Nash equilibrium completely dominates without placing any restrictions on the initial set of strategies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Piotrowski, E.W., Sladkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42, 1089 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Brunner, N., Linden, N.: Connection between Bell non locality and Bayesian game theory. Nat. Commun. 4, 2057 (2013)

    ADS  Article  Google Scholar 

  4. 4.

    Flitney, A.P.: Aspects of quantum game theory. Ph.D. Thesis, University of Adelaide, Adelaide, Australia (January, 2005)

  5. 5.

    Iqbal, A., Toor, A.H.: Quantum mechanics gives stability to a Nash equilibrium. Phys. Rev. A 65, 022306 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Phys. Rev. A 64, 030301 (2001)

    ADS  Article  Google Scholar 

  7. 7.

    Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Benjamin, S.C., Hayden, P.M.: Comment on ‘Quantum games and quantum strategies’. Phys. Rev. Lett. 87, 069801 (2001)

    ADS  Article  Google Scholar 

  9. 9.

    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Li, Q., Iqbal, A., Chena, M., Abbott, D.: Quantum strategies win in a defector-dominated population. Physica A 391, 3316 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    Pawela, Ł.: Quantum games on evolving random networks. Physica A 458, 179 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Solmeyer, N., Dixon, R., Balu, R.: Characterizing the Nash equilibria of a three-player Bayesian quantum game. Quantum Inf. Process. 16, 146 (2017)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Landsburg, E.S.: Nash equilibria in quantum games. Proc. Am. Math. Soc. 139, 4423 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291 (2000)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    de Sousa, P.B.M., Ramos, R.V.: Multiplayer quantum games and its application as access controller in architecture of quantum computers. Quantum Inf. Process. 7, 125 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Zabaleta, O.G., Barrangú, J.P., Arizmendi, C.M.: Quantum game application to spectrum scarcity problems. Physica A 466, 455 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Zabaleta, O.G., Arizmendi, C.M.: Quantum dating market. Physica A 389, 2858 (2010)

    ADS  Article  MATH  Google Scholar 

  18. 18.

    Alexandre, G.M., da Silva, S.L.: Quantum Russian roulette. Physica A 392, 400 (2013)

    Article  Google Scholar 

  19. 19.

    Clark, K.B.: Bioreaction quantum computing without quantum diffusion. Neuroquantology 10, 646 (2012)

    Article  Google Scholar 

  20. 20.

    Turner, P.E., Chao, L.: Prisoner’s dilemma in an RNA virus. Nature 398, 441 (1999)

    ADS  Article  Google Scholar 

  21. 21.

    Pfeiffer, T., Schuster, S., Bonhoeffer, S.: Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504 (2001)

    ADS  Article  Google Scholar 

  22. 22.

    Frick, T., Schuster, S.: An example of the prisoner’s dilemma in biochemistry. Naturwissenschaften 90, 327 (2003)

    ADS  Article  Google Scholar 

  23. 23.

    Chettaoui, C., Delaplace, F., Manceny, M., Malo, M.: Games network and application to the plasminogen activator system. Biosystems 87, 136 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the anonymous reviewer for the suggestion of discussing an application of our game.

Author information

Affiliations

Authors

Corresponding author

Correspondence to George Siopsis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siopsis, G., Balu, R. & Solmeyer, N. Quantum prisoners’ dilemma under enhanced interrogation. Quantum Inf Process 17, 144 (2018). https://doi.org/10.1007/s11128-018-1915-9

Download citation

Keywords

  • Quantum games
  • Nash equilibrium
  • Pareto-optimal
  • Entanglement
  • Quantum circuit