Bell-state generation on remote superconducting qubits with dark photons

  • Ming HuaEmail author
  • Ming-Jie Tao
  • Ahmed Alsaedi
  • Tasawar Hayat
  • Hai-Rui Wei
  • Fu-Guo Deng


We present a scheme to generate the Bell state deterministically on remote transmon qubits coupled to different 1D superconducting resonators connected by a long superconducting transmission line. Using the coherent evolution of the entire system in the all-resonance regime, the transmission line need not to be populated with microwave photons which can robust against the long transmission line loss. This lets the scheme more applicable to the distributed quantum computing on superconducting quantum circuit. Besides, the influence from the small anharmonicity of the energy levels of the transmon qubits can be ignored safely.


Bell state Entanglement Cavity QED Circuit QED Superconducting qubit 



M. Hua was supported by the National Natural Science Foundation of China under Grants Nos. 11647042 and 11704281. H.R. Wei was supported by the National Natural Science Foundation of China under Grant No. 11604012. F.G. Deng was supported by the National Natural Science Foundation of China under Grants Nos. 11674033 and 11474026, and the Fundamental Research Funds for the Central Universities under Grant No. 2015KJJCA01.


  1. 1.
    Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)Google Scholar
  2. 2.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 21, 17671 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Long, G.L., Xiao, L.: Experimental realization of a fetching algorithm in a 7-qubit NMR spin Liouville space computer. J. Chem. Phys. 119, 8473 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Yang, W.L., Yin, Z.Q., Xu, Z.Y., Feng, M., Du, J.F.: One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cav- ity. Appl. Phys. Lett. 96, 241113 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Wei, H.R., Long, G.L.: Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators. Phys. Rev. A 91, 032324 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Han, X., Guo, Q., Zhu, A.D., Zhang, S., Wang, H.F.: Effective W-state fusion strategies in nitrogen-vacancy centers via coupling to microtoroidal resonators. Opt. Express 25, 17701 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrody-namics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Yu, L.B., Feng, J.S., Dong, P., Li, D.C., Cao, Z.L.: Robust quantum storage and retrieval in a hybrid system by controllable Stark-chirped rapid adiabatic passages. Quantum Inf. Process 14, 3303 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chang, J.B., Vissers, M.R., Córcoles, A.D., Sandberg, M., Gao, J.S., Abraham, D.W., Chow, J.M., Gambetta, J.M., Rothwell, M.B., Keefe, G.A., Steffen, M., Pappas, D.P.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., Cross, A.W., Johnson, B.R., Masluk, N.A., Ryan, C.A., Smolin, J.A., Srinivasan, S.J., Steffen, M.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature (London) 519, 66 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrøm, C.J., Martinis, J.M., Cleland, A.N.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Adhikari, P., Hafezi, M., Taylor, J.M.: Nonlinear optics quantum computing with circuit QED. Phys. Rev. Lett. 110, 060503 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Haack, G., Helmer, F., Mariantoni, M., Marquardt, F., Solano, E.: Resonant quantum gates in circuit quantum electrodynamics. Phys. Rev. B 82, 024514 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Strauch, F.W.: Quantum logic gates for superconducting resonator qudits. Phys. Rev. A 84, 052313 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)CrossRefGoogle Scholar
  27. 27.
    Xue, Z.Y., Zhou, J., Wang, Z.D.: Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits. Phys. Rev. A 92, 022320 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Xue, Z.Y., Gu, F.L., Hong, Z.P., Yang, Z.H., Zhang, D.W., Hu, Y., You, J.Q.: Nonadiabatic holonomic quantum computation with dressed-state qubits. Phys. Rev. Appl. 7, 054022 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Steffen, M., Ansmann, M., Bialczak, R.C., Katz, N., Lucero, E., McDermott, R., Neeley, M., Weig, E.M., Cleland, A.N., Martinis, J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423 (2006)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Cao, Y., Huo, W.Y., Ai, Q., Long, G.L.: Theory of degenerate three-wave mixing using circuit QED in solid-state circuits. Phys. Rev. A 84, 053846 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Leghtas, Z., Vool, U., Shankar, S., Hatridge, M., Girvin, S.M., Devoret, M.H., Mirrahimi, M.: Stabilizing a Bell state of two superconducting qubits by dissipation engineering. Phys. Rev. A 88, 023849 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Strauch, F.W.: All-resonant control of superconducting resonators. Phys. Rev. Lett. 109, 210501 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Strauch, F.W., Onyango, D., Jacobs, K., Simmonds, R.W.: Entangled-state synthesis for su- perconducting resonators. Phys. Rev. A 85, 022335 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Wang, W., Hu, L., Xu, Y., Liu, K., Ma, Y., Zheng, S.B., Vijay, R., Song, Y.P., Duan, L.M., Sun, L.: Converting quasiclassical states into arbitrary fock state superpositions in a superconducting circuit. Phys. Rev. Lett. 118, 223604 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Majer, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Johnson, B.R., Reed, M.D., Houck, A.A., Schuster, D.I., Bishop, L.S., Ginossar, E., Gambetta, J.M., DiCarlo, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Quantum non-demolition detection of single microwave photons in a circuit. Nat. Phys. 6, 663 (2010)CrossRefGoogle Scholar
  37. 37.
    Feng, W., Wang, P.Y., Ding, X.M., Xu, L.T., Li, X.Q.: Generating and stabilizing the Greenberger–Horne–Zeilinger state in circuit QED: joint measurement, Zeno effect, and feedback. Phys. Rev. A 83, 042313 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Hua, M., Tao, M.J., Deng, F.G.: Quantum state transfer and controlled-phase gate on one- dimensional superconducting resonators assisted by a quantum bus. Sci. Rep. 6, 22037 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    Wu, C.W., Gao, M., Li, H.Y., Deng, Z.J., Dai, H.Y., Chen, P.X., Li, C.Z.: Scalable one-way quantum computer using on-chip resonator qubits. Phys. Rev. A 85, 042301 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Yang, C.P., Su, Q.P., Han, S.Y.: Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A 86, 022329 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F.: Crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators. Phys. Rev. A 93, 042307 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    Galiautdinov, A., Korotkov, A.N., Martinis, J.M.: Resonator-zero-qubit architecture for superconducting qubits. Phys. Rev. A 85, 042321 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Ciracf, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Unconditional preparation of entanglement between atoms in cascaded optical cavities. Phys. Rev. A 59, 4249 (1999)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Clark, S., Peng, A., Gu, M., Parkins, S.: Unconditional preparation of entanglement between atoms in cascaded optical cavities. Phys. Rev. Lett. 91, 177901 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    Browne, D.E., Plenio, M.B., Huelga, S.F.: Robust creation of entanglement between ions in spatially separate cavities. Phys. Rev. Lett. 91, 067901 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    Duan, L.M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single- photon detections. Phys. Rev. Lett. 90, 253601 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    Mancini, S., Bose, S.: Engineering an interaction and entanglement between distant atoms. Phys. Rev. A 70, 022307 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    Xiao, Y.F., Lin, X.M., Gao, J., Yang, Y., Han, Z.F., Guo, G.C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    Lü, X.Y., Wu, J., Zheng, L.L., Zhan, Z.M.: Voltage-controlled entanglement and quantum- information transfer between spatially separated quantum-dotmolecules. Phys. Rev. A 83, 042302 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    Clader, B.D.: Quantum networking of microwave photons using optical fibers. Phys. Rev. A 90, 012324 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    Yin, Z.Q., Yang, W.L., Sun, L., Duan, L.M.: Quantum network of superconducting qubits through an optomechanical interface. Phys. Rev. A 91, 012333 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    Schreier, J.A., Houck, A.A., Koch, J., Schuster, D.I., Johnson, B.R., Chow, J.M., Gambetta, J.M., Majer, J., Frunzio, L., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502(R) (2008)ADSCrossRefGoogle Scholar
  57. 57.
    Reed, M.D., DiCarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    van Enk, S.J., Kimble, H.J., Cirac, J.I., Zoller, P.: Quantum communication with dark photons. Phys. Rev. A 59, 2659 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    Yang, W.L., Hu, Y., Yin, Z.Q., Deng, Z.J., Feng, M.: Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit. Phys. Rev. A 83, 022302 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    Strand, J.D., Ware, M., Beaudoin, F., Ohki, T.A., Johnson, B.R., Blais, A., Plourde, B.L.T.: First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505(R) (2013)ADSCrossRefGoogle Scholar
  62. 62.
    Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    Hu, Y., Tian, L.: Deterministic generation of entangled photons in superconducting resonator arrays. Phys. Rev. Lett. 106, 257002 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    Peropadre, B., Zueco, D., Wulschner, F., Deppe, F., Marx, A., Gross, R., Ripoll, J.J.G.: Tunable coupling engineering between superconducting resonators: From sidebands to effective gauge fields. Phys. Rev. B 87, 134504 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    Johansson, J.R., Johansson, G., Nori, F.: Optomechanical-like coupling between superconducting resonators. Phys. Rev. A 90, 053833 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ming Hua
    • 1
    • 2
    • 3
    Email author
  • Ming-Jie Tao
    • 3
  • Ahmed Alsaedi
    • 2
  • Tasawar Hayat
    • 2
    • 4
  • Hai-Rui Wei
    • 5
  • Fu-Guo Deng
    • 2
    • 3
  1. 1.Department of Applied Physics, School of ScienceTianjin Polytechnic UniversityTianjinChina
  2. 2.NAAM-Research Group, Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Physics, Applied Optics Beijing Area Major LaboratoryBeijing Normal UniversityBeijingChina
  4. 4.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  5. 5.School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations