Skip to main content
Log in

Stochastic local operations and classical communication (SLOCC) and local unitary operations (LU) classifications of n qubits via ranks and singular values of the spin-flipping matrices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We construct \(\ell \)-spin-flipping matrices from the coefficient matrices of pure states of n qubits and show that the \(\ell \)-spin-flipping matrices are congruent and unitary congruent whenever two pure states of n qubits are SLOCC and LU equivalent, respectively. The congruence implies the invariance of ranks of the \(\ell \)-spin-flipping matrices under SLOCC and then permits a reduction of SLOCC classification of n qubits to calculation of ranks of the \(\ell \)-spin-flipping matrices. The unitary congruence implies the invariance of singular values of the \(\ell \)-spin-flipping matrices under LU and then permits a reduction of LU classification of n qubits to calculation of singular values of the \(\ell \)-spin-flipping matrices. Furthermore, we show that the invariance of singular values of the \(\ell \)-spin-flipping matrices \(\Omega _{1}^{(n)}\) implies the invariance of the concurrence for even n qubits and the invariance of the n-tangle for odd n qubits. Thus, the concurrence and the n-tangle can be used for LU classification and computing the concurrence and the n-tangle only performs additions and multiplications of coefficients of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crèpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. Verstraete, F., Dehaene, J., DeMoor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. Miyake, A.: Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A 67, 012108 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. Borsten, L., Dahanayake, D., Duff, M.J., Marrani, A., Rubens, W.: Four-qubit entanglement classification from string theory. Phys. Rev. Lett. 105, 100507 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. Viehmann, O., Eltschka, C., Siewert, J.: Polynomial invariants for discrimination and classification of four-qubit entanglement. Phys. Rev. A 83, 052330 (2011)

    Article  ADS  Google Scholar 

  8. Bastin, T., Krins, S., Mathonet, P., Godefroid, M., Lamata, L., Solano, E.: Operational families of entanglement classes for symmetric \(N\)-qubit states. Phys. Rev. Lett. 103, 070503 (2009)

    Article  ADS  Google Scholar 

  9. Ribeiro, P., Mosseri, R.: Entanglement in the symmetric sector of \(n\) qubits. Phys. Rev. Lett. 106, 180502 (2011)

    Article  ADS  Google Scholar 

  10. Li, X., Li, D.: Classification of general n-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix. Phys. Rev. Lett. 108, 180502 (2012)

    Article  ADS  Google Scholar 

  11. Li, X., Li, D.: Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states. Phys. Rev. A 86, 042332 (2012)

    Article  ADS  Google Scholar 

  12. Sharma, S.S., Sharma, N.K.: Classification of multipartite entanglement via negativity fonts. Phys. Rev. A 85, 042315 (2012)

    Article  ADS  Google Scholar 

  13. Gour, G., Wallach, N.R.: Classification of multipartite entanglement of all finite dimensionality. Phys. Rev. Lett. 111, 060502 (2013)

    Article  ADS  Google Scholar 

  14. Luque, J.-G., Thibon, J.-Y.: Polynomial invariants of four qubits. Phys. Rev. A 67, 042303 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  15. Leifer, M.S., Linden, N., Winter, A.: Measuring polynomial invariants of multiparty quantum states. Phys. Rev. A 69, 052304 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Levay, P.: On the geometry of a class of \(N\)-qubit entanglement monotones. J. Phys. A Math. Gen. 38, 9075 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Osterloh, A., Siewert, J.: Constructing \(N\)-qubit entanglement monotones from antilinear operators. Phys. Rev. A 72, 012337 (2005)

    Article  ADS  Google Scholar 

  18. Li, D., Li, X., Huang, H., Li, X.: Stochastic local operations and classical communication invariant and the residual entanglement for \(n\) qubits. Phys. Rev. A 76, 032304 (2007)

    Article  ADS  Google Scholar 

  19. Li, D.: The \(n\)-tangle of odd \(n\) qubits. Quantum Inf. Process. 11, 481 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Li, X., Li, D.: Polynomial invariants of degree 4 for even-\(n\) qubits and their applications in entanglement classification. Phys. Rev. A 88, 022306 (2013)

    Article  ADS  Google Scholar 

  21. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  22. Li, X., Li, D.: Entanglement classification and invariant-based entanglement measures. Phys. Rev. A 91, 012302 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wang, S., Lu, Y., Gao, M., Cui, J., Li, J.: Classification of arbitrary-dimensional multipartite pure states under stochastic local operations and classical communication using the rank of coefficient matrix. J. Phys. A Math. Theor. 46, 105303 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Grassl, M., Rötteler, M., Beth, T.: Computing local invariants of quantum-bit systems. Phys. Rev. A 58, 1833 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  25. Rains, E.M.: Polynomial invariants of quantum codes. IEEE Trans. Inf. Theory 46, 54 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.L., Tarrach, R.: Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)

    Article  ADS  Google Scholar 

  27. Acin, A., Andrianov, A., Jane, E., Tarrach, R.: Three-qubit pure-state canonical forms. J. Phys. A Math. Theor. 34, 6725 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Kraus, B.: Local unitary equivalence and entanglement of multipartite pure states. Phys. Rev. A 82, 032121 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kraus, B.: Local unitary equivalence of multipartite pure states. Phys. Rev. Lett. 104, 020504 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sárosi, G., Lévay, P.: Entanglement in fermionic Fock space. J. Phys. A Math. Theor. 47, 115304 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (Grant No. 10875061) and Tsinghua National Laboratory for Information Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafa Li.

Appendix A: Some expressions

Appendix A: Some expressions

$$\begin{aligned} e_{12}= & {} \sum _{i=0}^{2^{n-1}-1}(-1)^{N(i)}a_{i}a_{2^{n}-1-i},\\ e_{11}= & {} 2\sum _{i=0}^{2^{n-2}-1}(-1)^{N(i)}a_{i}a_{2^{n-1}-1-i},\\ e_{22}= & {} 2\sum _{i=0}^{2^{n-2}-1}(-1)^{N(i)}a_{2^{n-1}+i}a_{2^{n}-1-i}.\\ S^{2}= & {} |a_{0}a_{3}-a_{1}a_{2}|^{2}+|a_{0}a_{5}-a_{1}a_{4}|^{2} \\&+\,|a_{0}a_{7}-a_{1}a_{6}|^{2}+|a_{2}a_{5}-a_{3}a_{4}|^{2} \\&+\,|a_{2}a_{7}-a_{3}a_{6}|^{2}+|a_{4}a_{7}-a_{5}a_{6}|^{2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D. Stochastic local operations and classical communication (SLOCC) and local unitary operations (LU) classifications of n qubits via ranks and singular values of the spin-flipping matrices. Quantum Inf Process 17, 132 (2018). https://doi.org/10.1007/s11128-018-1900-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1900-3

Keywords

Navigation