How does Grover walk recognize the shape of crystal lattice?

  • Chul Ki Ko
  • Norio Konno
  • Etsuo SegawaEmail author
  • Hyun Jae Yoo


We consider the support of the limit distribution of the Grover walk on crystal lattices with the linear scaling. The orbit of the Grover walk is denoted by the parametric plot of the pseudo-velocity of the Grover walk in the wave space. The region of the orbit is the support of the limit distribution. In this paper, we compute the regions of the orbits for the triangular, hexagonal and kagome lattices. We show every outer frame of the support is described by an ellipse. The shape of the ellipse depends only on the realization of the fundamental lattice of the crystal lattice in \(\mathbb {R}^2\).


Grover walks Crystal lattice Limit theorem 


  1. 1.
    Portugal, R.: Quantum Walks and Search Algorithms. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  2. 2.
    Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: Spectral and asymptotic properties of Grover walks on crystal lattices. J. Funct. Anal. 267, 4197–4235 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of 45th IEEE Symposium on Foundations of Computer Science, pp. 32–41 (2004)Google Scholar
  4. 4.
    Higuchi, Yu., Shirai, T.: Some spectral and geometric properties for infinite graphs. Contemp. Math. 347, 29–56 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Segawa, E.: Localization of quantum walks induced by recurrence properties of random walks. Journal of Computational and Theoretical Nanoscience 10, 1583–1590 (2013). (special issue: “Theoretical and Mathematical Aspects of the Discrete Time Quantum Walk”) CrossRefGoogle Scholar
  6. 6.
    Godsil, C., Guo, K.: Quantum walks on regular graphs and eigenvalues. Electr. J. Comb. 18, 165 (2011)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: A remark on zeta functions of finite graphs via quantum walks. Pac. J. Math. Ind. 6, 73–84 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Yoshie, Y.: A characterization of the graphs to induce periodic Grover walk. arXiv:1703.06286
  9. 9.
    Gnutzmann, S., Smilansky, U.: Quantum graphs: applications to quantum chaos and universal spectral statistics. Adv. Phys. 55, 527–625 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Tanner, G.: From quantum graphs to quantum random walks. In: Khanna, F., Matrasulov, D. (eds.) Non-linear Dynamics and Fundamental Interactions. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 213, pp. 69–87 (2006)Google Scholar
  11. 11.
    Watabe, K., Kobayashi, N., Katori, M., Konno, N.: Limit distributions of two-dimensional quantum walks. Phys. Rev. A 77, 062331 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Kotani, M., Sunada, T., Shirai, T.: Asymptotic behavior of the transition probability of a random walk on an infinite graph. J. Funct. Anal. 159, 664–689 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lyu, C., Yu, L., Wu, S.: Localization in quantum walks on a honeycomb network. Phys. Rev. A 92, 052305 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Sunada, T.: Topological Crystallography with a View Towards Discrete Geometric Analysis (Surveys and Tutorials in Applied Mathematical Sciences), vol. 6. Springer, New York (2013)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University CollegeYonsei UniversityIncheonKorea
  2. 2.Department of Applied Mathematics, Faculty of EngineeringYokohama National UniversityHodogaya, YokohamaJapan
  3. 3.Graduate School of Information SciencesTohoku UniversityAoba, SendaiJapan
  4. 4.Department of Applied MathematicsHankyong National UniversityAnseong-siKorea

Personalised recommendations