Single-photon controlled multi-photon polarization unitary gate based on weak cross-Kerr nonlinearities



With the help of weak cross-Kerr nonlinearities, we propose a single-photon controlled multi-photon polarization unitary gate, which can fulfill the task of n single-photon controlled one-photon polarization unitary gates, but only by adopting a nondestructive measurement and an auxiliary coherent state. Moreover, simple linear optical elements and mature existing techniques containing Homodyne measurement and classical feed-forward are applied. So this scheme provides an efficient and feasible approach for optimally fulfilling single-photon controlled multi-photon unitary gate.


Quantum logic gate Multi-photon processing Cross-Kerr nonlinearities 



This study was supported by the National Natural Science Foundation of China (Grant Nos. 11674037, 11544013, 11305016, 61301133, 11271055), the Natural Science Foundation of Liaoning Province (20170540010), the Program for Liaoning Innovative Talents in University (LR2016001), and the Program of the Educational Office of Liaoning Province of China (Grant No. LQ2017006).


  1. 1.
    Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74(20), 4083–4086 (1995)ADSGoogle Scholar
  2. 2.
    Cirac, J.I.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)ADSGoogle Scholar
  3. 3.
    Yi, X.X., Su, X.H., You, L.: Conditional quantum phase gate between two 3-state atoms. Phys. Rev. Lett. 90(9), 097902 (2003)ADSGoogle Scholar
  4. 4.
    Duan, L.-M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(12), 127902 (2004)ADSGoogle Scholar
  5. 5.
    Zou, X., Zhang, S.L., Li, K., Guo, G.: Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors. Phys. Rev. A 75(3), 034302 (2007)ADSGoogle Scholar
  6. 6.
    Wang, M.-F., Jiang, N.-Q., Jin, Q.-L., Zheng, Y.-Z.: Continuous-variable controlled-Z gate using an atomic ensemble. Phys. Rev. A 83(6), 062339 (2011)ADSGoogle Scholar
  7. 7.
    Nielsen, E., Muller, R., Carroll, M.: Configuration interaction calculations of the controlled phase gate in double quantum dot qubits. Phys. Rev. B 85(3), 035319 (2012)ADSGoogle Scholar
  8. 8.
    Wei, H.-R., Deng, F.-G.: Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express 22(1), 593 (2014)ADSGoogle Scholar
  9. 9.
    Xu, G.F., Zhang, J., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 109(17), 170501 (2012)ADSGoogle Scholar
  10. 10.
    Xue, Z.-Y., Zhou, J., Wang, Z.D.: Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits. Phys. Rev. A 92(2), 022320 (2015)ADSGoogle Scholar
  11. 11.
    Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422(6930), 408–411 (2003)ADSGoogle Scholar
  12. 12.
    Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75(25), 4710–4713 (1995)ADSMathSciNetMATHGoogle Scholar
  13. 13.
    Lemr, K., Cernoch, A., Soubusta, J., Kieling, K., Eisert, J., Dusek, M.: Experimental implementation of the optimal linear-optical controlled phase gate. Phys. Rev. Lett. 106(1), 013602 (2011)ADSGoogle Scholar
  14. 14.
    Ukai, R., Yokoyama, S., Yoshikawa, J., van Loock, P., Furusawa, A.: Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation. Phys. Rev. Lett. 107(25), 250501 (2011)ADSGoogle Scholar
  15. 15.
    Rashid, M., Maarten, H., Yasir, J.: C-NOT gate based on ultracold Rydberg atom interactions. Sci. China 56(11), 2134–2137 (2013)Google Scholar
  16. 16.
    Feng, G., Guofu, X., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110(19), 190501 (2013)ADSGoogle Scholar
  17. 17.
    Antonelli, C., Shtaif, M., Brodsky, M.: Sudden death of entanglement induced by polarization mode dispersion. Phys. Rev. Lett. 106(8), 080404 (2011)ADSGoogle Scholar
  18. 18.
    Shtaif, M., Antonelli, C., Brodsky, M.: Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons. Opt. Express 19(3), 1728–1733 (2011)ADSGoogle Scholar
  19. 19.
    Dong, L., Wang, J.-X., Li, Q.-Y., Shen, H.-Z., Dong, H.-K., Xiu, X.-M., Gao, Y.-J.: Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem. Opt. Lett. 41(5), 1030–1033 (2016)ADSGoogle Scholar
  20. 20.
    Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93(25), 250502 (2004)ADSGoogle Scholar
  21. 21.
    Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79(2), 022301 (2009)ADSGoogle Scholar
  22. 22.
    Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80(4), 042310 (2009)ADSGoogle Scholar
  23. 23.
    Xia, Y., Song, J., Pei-Min, L., Song, H.-S.: Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity. J. Phys. B Atomic Mol. Opt. Phys. 44(2), 025503 (2011)ADSGoogle Scholar
  24. 24.
    Lin, Q., He, B.: Weaving independently generated photons into an arbitrary graph state. Phys. Rev. A 84(6), 062312 (2011)ADSGoogle Scholar
  25. 25.
    Xiu, X.-M., Dong, L., Gao, Y.-J., Yi, X.X.: Nearly deterministic controlled-not gate with weak cross-Kerr nonlinearities. Quantum Inf. Comput. 12(1–2), 0159–0170 (2012)MathSciNetMATHGoogle Scholar
  26. 26.
    Xiu, X.-M., Dong, L., Shen, H.-Z., Gao, Y.-J., Yi, X.X.: Construction scheme of a two-photon polarization controlled arbitrary phase gate mediated by weak cross-phase modulation. J. Opt. Soc. Am. B 30(3), 589–597 (2013)ADSGoogle Scholar
  27. 27.
    Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A 69(6), 062321 (2004)ADSGoogle Scholar
  28. 28.
    Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)MathSciNetMATHGoogle Scholar
  29. 29.
    Chau, H.F., Wilczek, F.: Simple realization of the fredkin gate using a series of two-body operators. Phys. Rev. Lett. 75(4), 748–750 (1995)ADSGoogle Scholar
  30. 30.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)ADSGoogle Scholar
  31. 31.
    Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74(20), 4087–4090 (1995)ADSMathSciNetMATHGoogle Scholar
  32. 32.
    Smolin, J.A., DiVincenzo, D.P.: Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A 53(4), 2855–2856 (1996)ADSGoogle Scholar
  33. 33.
    Nengkun, Y., Ying, M.: Optimal simulation of Deutsch gates and the Fredkin gate. Phys. Rev. A 91(3), 032302 (2015)ADSGoogle Scholar
  34. 34.
    Jones, C.: Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev. A 87(2), 022328 (2013)ADSGoogle Scholar
  35. 35.
    Ivanov, S.S., Ivanov, P.A., Vitanov, N.V.: Efficient construction of three- and four-qubit quantum gates by global entangling gates. Phys. Rev. A 91(3), 032311 (2015)ADSGoogle Scholar
  36. 36.
    Milburn, G.J.: Quantum optical Fredkin gate. Phys. Rev. Lett. 62(18), 2124–2127 (1989)ADSGoogle Scholar
  37. 37.
    Lin, Q., He, B.: Highly efficient processing of multi-photon states. Sci. Rep. 5, 12792 (2015)ADSGoogle Scholar
  38. 38.
    Dong, L., Lin, Y.-F., Wang, J.-X., Li, Q.-Y., Shen, H.-Z., Dong, H.-K., Ren, Y.-P., Xiu, X.-M., Gao, Y.-J., Choo Hiap, O.: Nearly deterministic Fredkin gate based on weak cross-Kerr nonlinearities. J. Opt. Soc. Am. B 33(2), 253–260 (2016)ADSGoogle Scholar
  39. 39.
    Lin, X.-M., Zhou, Z.-W., Ye, M.-Y., Xiao, Y.-F., Guo, G.-C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73(1), 012323 (2006)ADSGoogle Scholar
  40. 40.
    Zou, X., Li, K., Guo, G.: Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate. Phys. Rev. A 74(4), 044305 (2006)ADSGoogle Scholar
  41. 41.
    Xiao, Y.-F., Zou, X.-B., Guo, G.-C.: One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75(5), 054303 (2007)ADSGoogle Scholar
  42. 42.
    Zhang, Y.Q., Zhang, S., Yeon, K.H., Yu, S.C.: One-step implementation of a multiqubit controlled-phase gate with superconducting quantum interference devices coupled to a resonator. J. Opt. Soc. Am. B 29(3), 300–304 (2012)ADSGoogle Scholar
  43. 43.
    Xiu, X.-M., Li, Q.-Y., Lin, Y.-F., Dong, L., Dong, H.-K., Gao, Y.-J.: One-photon controlled two-photon not gate contributed by weak cross-Kerr nonlinearities. Opt. Commun. 393, 173–177 (2017)ADSGoogle Scholar
  44. 44.
    Gardiner, C.W., Zoller, P.: Quantum Noise. Springer Press, Berlin (2000)MATHGoogle Scholar
  45. 45.
    Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)ADSGoogle Scholar
  46. 46.
    Chuang, I., Yamamoto, Y.: Simple quantum computer. Phys. Rev. A 52(5), 3489–3496 (1995)ADSGoogle Scholar
  47. 47.
    Shapiro, J.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73(6), 062305 (2006)ADSGoogle Scholar
  48. 48.
    Shapiro, J.H., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. N. J. Phys. 9(1), 16 (2007)Google Scholar
  49. 49.
    Kok, P.: Effects of self-phase-modulation on weak nonlinear optical quantum gates. Phys. Rev. A 77(1), 013808 (2008)ADSMathSciNetGoogle Scholar
  50. 50.
    Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81(4), 043823 (2010)ADSGoogle Scholar
  51. 51.
    Fan, B., Kockum, A.F., Combes, J., Johansson, G., Hoi, I., Wilson, C.M., Delsing, P., Milburn, G.J., Stace, T.M.: Breakdown of the cross-Kerr scheme for photon counting. Phys. Rev. Lett. 110(5), 053601 (2013)ADSGoogle Scholar
  52. 52.
    Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50(7), 36–42 (1997)Google Scholar
  53. 53.
    Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77(2), 633–673 (2005)ADSGoogle Scholar
  54. 54.
    Schmidt, H., Imamoglu, A.: Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21(23), 1936–1938 (1996)ADSGoogle Scholar
  55. 55.
    Harris, S., Hau, L.: Nonlinear optics at low light levels. Phys. Rev. Lett. 82(23), 4611–4614 (1999)ADSGoogle Scholar
  56. 56.
    Lukin, M.D., Imamoglu, A.: Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84(7), 1419–1422 (2000)ADSGoogle Scholar
  57. 57.
    Petrosyan, D., Kurizki, G.: Symmetric photon–photon coupling by atoms with Zeeman-split sublevels. Phys. Rev. A 65(3), 033833 (2002)ADSGoogle Scholar
  58. 58.
    Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Stationary pulses of light in an atomic medium. Nature 426(6967), 638–641 (2003)ADSGoogle Scholar
  59. 59.
    Chen, Y.-F., Wang, C.-Y., Wang, S.-H., Ite, A.Y.: Low-light-level cross-phase-modulation based on stored light pulses. Phys. Rev. Lett. 96(4), 043603 (2006)ADSGoogle Scholar
  60. 60.
    Li, Y., Hang, C., Ma, L., Huang, G.: Controllable entanglement of lights in a five-level system. Phys. Lett. A 354(1–2), 1–7 (2006)ADSGoogle Scholar
  61. 61.
    Wang, Z.-B., Marzlin, K.-P., Sanders, B.C.: Large cross-phase modulation between slow copropagating weak pulses in \(^{87}\)Rb. Phys. Rev. Lett. 97(6), 063901 (2006)ADSGoogle Scholar
  62. 62.
    Lo, H.Y., Chen, Y.C., Su, P.C., Chen, H.C., Chen, J.X., Chen, Y.C., Yu, I.A., Chen, Y.F.: Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels. Phys. Rev. A 83(4), 041804(R) (2011)ADSGoogle Scholar
  63. 63.
    Shiau, B.-W., Meng-Chang, W., Lin, C.-C., Chen, Y.-C.: Low-light-level cross-phase modulation with double slow light pulses. Phys. Rev. Lett. 106(19), 193006 (2011)ADSGoogle Scholar
  64. 64.
    Chen, Y.H., Lee, M.J., Hung, W., Chen, Y.C., Chen, Y.F., Yu, I.A.: Demonstration of the interaction between two stopped light pulses. Phys. Rev. Lett. 108(17), 173603 (2012)ADSGoogle Scholar
  65. 65.
    Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(6720), 594–598 (1999)ADSGoogle Scholar
  66. 66.
    He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83(5), 053826 (2011)ADSGoogle Scholar
  67. 67.
    He, B., Scherer, A.: Continuous-mode effects and photon–photon phase gate performance. Phys. Rev. A 85(3), 033814 (2012)ADSGoogle Scholar
  68. 68.
    Friedler, I., Petrosyan, D., Fleischhauer, M., Kurizki, G.: Long-range interactions and entanglement of slow single-photon pulses. Phys. Rev. A 72(4), 043803 (2005)ADSGoogle Scholar
  69. 69.
    He, B., MacRae, A., Han, Y., Lvovsky, A., Simon, C.: Transverse multimode effects on the performance of photon–photon gates. Phys. Rev. A 83(2), 022312 (2011)ADSGoogle Scholar
  70. 70.
    Shahmoon, E., Kurizki, G., Fleischhauer, M., Petrosyan, D.: Strongly interacting photons in hollow-core waveguides. Phys. Rev. A 83(3), 033806 (2011)ADSGoogle Scholar
  71. 71.
    Venkataraman, V., Saha, K., Gaeta, A.L.: Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photonics 7(2), 138–141 (2012)ADSGoogle Scholar
  72. 72.
    Jin, G.-S., Lin, Y., Biao, W.: Generating multiphoton Greenberger–Horne–Zeilinger states with weak cross-Kerr nonlinearity. Phys. Rev. A 75(5), 054302 (2007)ADSGoogle Scholar
  73. 73.
    Feizpour, A., Hallaji, M., Dmochowski, G., Steinberg, A.M.: Observation of the nonlinear phase shift due to single post-selected photons. Nat. Phys. 11(11), 905–909 (2015)Google Scholar
  74. 74.
    Hoi, I.-C., Kockum, A.F., Palomaki, T., Stace, T.M., Fan, B., Tornberg, L., Sathyamoorthy, S.R., Johansson, G., Delsing, P., Wilson, C.M.: Giant cross-Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111(5), 053601 (2013)ADSGoogle Scholar
  75. 75.
    Pernice, W.H.P., Schuck, C., Minaeva, O., Li, M., Goltsman, G.N., Sergienko, A.V., Tang, H.X.: High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)ADSGoogle Scholar
  76. 76.
    Huang, D., Huang, P., Lin, D., Wang, C., Zeng, G.: High-speed continuous-variable quantum key distribution without sending a local oscillator. Opt. Lett. 40(16), 3695–3698 (2015)ADSGoogle Scholar
  77. 77.
    Bakker, M.P., Snijders, H., Löffler, W., Barve, A.V., Coldren, L.A., Bouwmeester, D., van Exter, M.P.: Homodyne detection of coherence and phase shift of a quantum dot in a cavity. Opt. Lett. 40(13), 3173–3176 (2015)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and PhysicsBohai UniversityJinzhouChina

Personalised recommendations