Advertisement

Notes on modified trace distance measure of coherence

  • Bin Chen
  • Shao-Ming Fei
Article
  • 154 Downloads

Abstract

We investigate the modified trace distance measure of coherence recently introduced in Yu et al. [Phys. Rev. A 94, 060302(R), 2016]. We show that for any single-qubit state, the modified trace norm of coherence is equal to the \(l_{1}\)-norm of coherence. For any d-dimensional quantum system, an analytical formula of this measure for a class of maximally coherent mixed states is provided. The trade-off relation between the coherence quantified by the new measure and the mixedness quantified by the trace norm is also discussed. Furthermore, we explore the relation between the modified trace distance measure of coherence and other measures such as the \(l_{1}\)-norm of coherence and the geometric measure of coherence.

Keywords

Modified trace distance of coherence Trace norm of coherence Maximally coherent Mixed states 

Notes

Acknowledgements

This work is supported by the NSF of China under Grant No. 11675113.

References

  1. 1.
    Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)CrossRefGoogle Scholar
  2. 2.
    Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115, 210403 (2015)CrossRefGoogle Scholar
  4. 4.
    Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015)Google Scholar
  6. 6.
    Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Rebentrost, P., Mohseni, M., Aspuru-Guzik, A.: Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113, 9942 (2009)CrossRefGoogle Scholar
  8. 8.
    Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)CrossRefGoogle Scholar
  9. 9.
    Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)CrossRefGoogle Scholar
  10. 10.
    Huelga, S., Plenio, M.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Vazquez, H., Skouta, R., Schneebeli, S., Kamenetska, M., Breslow, R., Venkataraman, L., Hybertsen, M.: Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Karlström, O., Linke, H., Karlström, G., Wacker, A.: Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84, 113415 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, Z., Wang, Y.-L., Wang, Z.-X.: Trace distance measure of coherence for a class of qudit states. Quantum Inf. Process. 15, 4641 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yu, X.-D., Zhang, D.-J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302(R) (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Zhang, H.-J., Chen, B., Li, M., Fei, S.-M., Long, G.-L.: Estimation on geometric measure of quantum coherence. Commun. Theor. Phys. 67, 166 (2017)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhan, X.: Matrix Inequalities. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  25. 25.
    Watrous, J.: Theory of Quantum Information. University of Waterloo, Waterloo (2011). http://www.cs.uwaterloo.ca/watrous/CS766/

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesTianjin Normal UniversityTianjinChina
  2. 2.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  3. 3.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations