Skip to main content

Advertisement

Log in

Toward prethreshold gate-based quantum simulation of chemical dynamics: using potential energy surfaces to simulate few-channel molecular collisions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above \(\approx 10\) eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Here channel refers to a Born–Oppenheimer electronic molecular state.

References

  1. Tseng, C.H., Somaroo, S., Sharf, Y., Knill, E., Laflamme, R., Havel, T.F., Cory, D.G.: Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer. Phys. Rev. A 61, 012302 (1999)

    Article  ADS  Google Scholar 

  2. Somaroo, S., Tseng, C.H., Havel, T.F., Laflamme, R., Cory, D.G.: Quantum simulations on a quantum computer. Phys. Rev. Lett. 82, 5381–5383 (1999)

    Article  ADS  Google Scholar 

  3. Khitrin, A.K., Fung, B.M.: NMR simulation of an eight-state quantum system. Phys. Rev. A 64, 032306 (2001)

    Article  ADS  Google Scholar 

  4. Negrevergne, C., Somma, R., Ortiz, G., Knill, E., Laflamme, R.: Liquid-state NMR simulations of quantum many-body problems. Phys. Rev. A 71, 032344 (2005)

    Article  ADS  Google Scholar 

  5. Peng, X.H., Du, J.F., Suter, D.: Quantum phase transition of ground-state entanglement in a Heisenberg spin chain simulated in an NMR quantum computer. Phys. Rev. A 71, 012307 (2005)

    Article  ADS  Google Scholar 

  6. Brown, K.R., Clark, R.J., Chuang, I.L.: Limitations of quantum simulation examined by a pairing Hamiltonian using nuclear magnetic resonance. Phys. Rev. Lett. 97, 050504 (2006)

    Article  ADS  Google Scholar 

  7. Peng, X.H., Zhang, J.F., Du, J.F., Suter, D.: Quantum simulation of a system with competing two- and three-body interactions. Phys. Rev. Lett. 103, 140501 (2009)

    Article  ADS  Google Scholar 

  8. Du, J.F., Xu, N.Y., Peng, X.H., Wang, P.F., Wu, S.F., Lu, D.W.: NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. Phys. Rev. Lett. 104, 030502 (2010)

    Article  ADS  Google Scholar 

  9. Edwards, E.E., Korenblit, S., Kim, K., Islam, R., Chang, M.-S., Freericks, J.K., Lin, G.-D., Duan, L.-M., Monroe, C.: Quantum simulation and phase diagram of the transverse field ising model with three atomic spins. Phys. Rev. B 82, 060412 (2010)

    Article  ADS  Google Scholar 

  10. Kinoshita, T., Wenger, T., Weiss, D.S.: Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004)

    Article  ADS  Google Scholar 

  11. Friedenauer, A., Schmitz, H., Glueckert, J.T., Porras, D., Schaetz, T.: Simulating a quantum magnet with trapped ions. Nat. Phys. 4, 757–761 (2008)

    Article  Google Scholar 

  12. Gerritsma, R., Kirchmair, G., Zähringer, F., Solano, E., Blatt, R., Roos, C.F.: Quantum simulation of the Dirac equation. Nature 463, 68–71 (2010)

    Article  ADS  Google Scholar 

  13. Gerritsma, R., Lanyon, B.P., Kirchmair, G., Zähringer, F., Hempel, C., Casanova, J., García-Ripoll, J.J., Solano, E., Blatt, R., Roos, C.F.: Quantum simulation of the Klein paradox with trapped ions. Phys. Rev. Lett. 106, 060503 (2011)

    Article  ADS  Google Scholar 

  14. Lanyon, B.P., Hempel, C., Nigg, D., Müller, M., Gerritsma, R., Zähringer, F., Schindler, P., Barreiro, J.T., Rambach, M., Kirchmair, G., Hennrich, M., Zoller, P., Blatt, R., Roos, C.F.: Universal digital quantum simulation with trapped ions. Science 334, 57–61 (2011)

    Article  ADS  Google Scholar 

  15. Lanyon, B.P., Whitfield, J.D., Gillett, G.G., Goggin, M.E., Almeida, M.P., Kassal, I., Biamonte, J.D., Mohseni, M., Powell, B.J., Barbieri, M., Aspuru-Guzik, A., White, A.G.: Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010)

    Article  Google Scholar 

  16. Shen, Y., Zhang, X., Zhang, S., Zhang, J.-N., Yung, M.-H., Kim, K.: Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. Phys. Rev. A 95, 020501(R) (2017)

    Article  ADS  Google Scholar 

  17. Ma, X.S., Dakic, B., Naylor, W., Zeilinger, A., Walther, P.: Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nat. Phys. 7, 399–405 (2011)

    Article  Google Scholar 

  18. Kassal, I., Whitfield, J.D., Perdomo-Ortiz, A., Yung, M.-H., Aspuru-Guzik, A.: Simulating chemistry using quantum computers. Annu. Rev. Phys. Chem. 62, 185–207 (2011)

    Article  ADS  Google Scholar 

  19. Wang, Y., Dolde, F., Biamonte, J., Babbush, R., Bergholm, V., Yang, S., Jakobi, I., Neumann, P., Aspuru-Guzik, A., Whitfield, J.D., Wrachtrup, J.: Quantum simulation of helium hydride cation in a solid-state spin register. ACS Nano 9, 7769–7774 (2015)

    Article  Google Scholar 

  20. O’Malley, P.J.J., Babbush, R., Kivlichan, I.D., Romero, J., McLean, J.R., Barends, R., Kelly, J., Roushan, P., Tranter, A., Ding, N., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Fowler, A.G., Jeffrey, E., Lucero, E., Megrant, A., Mutus, J.Y., Neeley, M., Neill, C., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Coveney, P.V., Love, P.J., Neven, H., Aspuru-Guzik, A., Martinis, J.M.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016)

    Google Scholar 

  21. Kandala, A., Mezzacapo, A., Temme, K., Takita,M., Chow, J.M., Gambetta, J.M.: Hardware-efficient quantum optimizer for small molecules and quantum magnets. arXiv:1704.05018 (2017)

  22. Colless, J.I., Ramasesh, V.V., Dahlen, D., Blok, M.S., McClean,J.R., Carter, J., de Jong, W.A., Siddiqi, I.: Robust determination of molecular spectra on a quantum processor. arXiv:1707.06408 (2017)

  23. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Commun. Math. Phys. 270, 359 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. Quantum Inf. Comput. 12, 901–924 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114, 090502 (2015)

    Article  ADS  Google Scholar 

  26. Kivlichan, I.D., Wiebe, N., Babbush, R., Aspuru-Guzik, A.: Bounding the costs of quantum simulation of many-body physics in real space. arXiv:1608.05696 (2016)

  27. Zalka, C.: Simulating quantum systems on a quantum computer. Proc. R. Soc. Lond. A 454, 313–322 (1998)

    Article  ADS  MATH  Google Scholar 

  28. Kassal, I., Jordan, S.P., Love, P.J., Mohseni, M., Aspuru-Guzik, A.: Polynomial-time quantum algorithms for the simulation of chemical dynamics. Proc. Natl. Acad. Sci. USA 105, 18681–18686 (2008)

    Article  ADS  Google Scholar 

  29. Sornborger, A.T.: Quantum simulation of tunneling in small systems. Sci. Rep. 2, 597 (2012)

    Article  ADS  Google Scholar 

  30. Feng, G.R., Lu, Y., Hao, L., Zhang, F.H., Long, G.L.: Experimental simulation of quantum tunneling in small systems. Sci. Rep. 3, 2232 (2013)

    Article  Google Scholar 

  31. Benenti, G., Strini, G.: Quantum simulation of the single-particle Schrödinger equation. Am. J. Phys. 76, 657–662 (2008)

    Article  ADS  Google Scholar 

  32. Aspuru-Guzik, A., Wasielewski, M.: NSF workshop report: quantum information and computation for chemistry. arXiv:1706.05413 (2017)

  33. Geller, M.R., Martinis, J.M., Sornborger, A.T., Stancil, P.C., Pritchett, E.J., You, H., Galiautdinov, A.: Universal quantum simulation with prethreshold superconducting qubits: single-excitation subspace method. Phys. Rev. A 91, 062309 (2015)

    Article  ADS  Google Scholar 

  34. Stancil, P.C., You, H., Cook, A., Sornborger, A.T., Geller, M.R.: Towards quantum simulation of chemical dynamics with prethreshold superconducting qubits. arXiv:1602.00063 (2016)

  35. Cai, C.Y., Ai, Q., Quan, H.T., Sun, C.P.: Sensitive chemical compass assisted by quantum criticality. Phys. Rev. A 85, 022315 (2012)

    Article  ADS  Google Scholar 

  36. Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10–18 (2013)

    Article  Google Scholar 

  37. Pearson, J., Feng, G.R., Zheng, C., Long, G.L.: Experimental quantum simulation of avian compass in a nuclear magnetic resonance system. Sci. China Phys. Mech. Astron. 59, 120312 (2016)

    Article  Google Scholar 

  38. Child, M.S.: Molecular Collision Theory. Academic Press, London (1984)

    Google Scholar 

  39. Minami, T., Pindzola, M.S., Lee, T.-G., Schultz, D.R.: Lattice, time-dependent Schrödinger equation approach for charge transfer in collisions of be\(^{4+}\) with atomic hydrogen. J. Phys. B At. Mol. Opt. Phys. 39, 2877 (2006)

    Article  ADS  Google Scholar 

  40. Lin, C.Y., Stancil, P.C., Liebermann, H.-P., Funke, P., Buenker, R.J.: Inelastic processes in collisions of Na(3s,3p) with He at thermal energies. Phys. Rev. A 78, 052706 (2008)

    Article  ADS  Google Scholar 

  41. Stancil, P.C., Clarke, N.J., Zygelman, B., Cooper, D.L.: Ab initio study of charge transfer in low-energy Si\(^{3+}\) collisions with helium. J. Phys. B 32, 1523–1534 (1999)

    Article  ADS  Google Scholar 

  42. Nolte, J.L., Wu, Y., Stancil, P.C., Liebermann, H.-P., Buenker, R.J., Schultz, D.R., Hui, Y., Draganić, I.N., Havener, C.C., Raković, M.J.: Final-state-resolved charge exchange between O\(^{7+}\) and H (in preparation) (2016)

  43. Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  44. Iserles, A., Marthinsen, A., Nørsett, S.P.: On the implementation of the method of Magnus series for linear differential equations. BIT Numer. Math. 39, 281–304 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wiebe, N., Berry, D., Hoyer, P., Sanders, B.C.: Higher order decompositions of ordered operator exponentials. J. Phys. A. Math. Theor. 43, 065203 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Sornborger, A.T., Stewart, E.D.: Higher-order methods for simulations on quantum computers. Phys. Rev. A 60, 1956–1965 (1999)

    Article  ADS  Google Scholar 

  47. Lloyd, S.: Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346–349 (1995)

    Article  ADS  Google Scholar 

  48. Barends, R., Shabani, A., Lamata, L., Kelly, J., Mezzacapo A., Las Heras, U., Babbush, R., Fowler, A.G., Campbell, B., Chen Y., Chen Z., Chiaro B., Dunsworth A., Jeffrey E., Lucero E., Megrant A., Mutus, J.Y., Neeley, M., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Solano, E., Neven, H., Martinis, J.M.: Digitized adiabatic quantum computing with a superconducting circuit. arXiv:1511.03316 (2015)

  49. Suleimanov, YuV, Tscherbul, T.V., Krems, R.V.: Efficient method for quantum calculations of molecule-molecule scattering properties in a magnetic field. J. Chem. Phys. 137, 024103 (2008)

    Article  ADS  Google Scholar 

  50. Yang, B., Zhang, P., Wang, X., Stancil, P.C., Bowman, J.M., Balakrishnan, N., Forrey, R.C.: Quantum dynamics of CO-H\(_2\) in full dimensionality. Nat. Commun. 6, 6629 (2015)

    Article  ADS  Google Scholar 

  51. Welsch, R., Manthe, U.: Communication: Ro-vibrational control of chemical reactivity in H+CH\(_4 \rightarrow \) H\(_2\)+CH\(_3\): Full-dimensional quantum dynamics calculations and a sudden model. J. Chem. Phys. 141, 051102 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under CDI Grant DMR-1029764.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. Sornborger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sornborger, A.T., Stancil, P. & Geller, M.R. Toward prethreshold gate-based quantum simulation of chemical dynamics: using potential energy surfaces to simulate few-channel molecular collisions. Quantum Inf Process 17, 106 (2018). https://doi.org/10.1007/s11128-018-1878-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1878-x

Keywords

Navigation