Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution

  • Weizhao Lu
  • Chunhui Huang
  • Kun Hou
  • Liting Shi
  • Huihui Zhao
  • Zhengmei Li
  • Jianfeng Qiu
Article

Abstract

In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.

Keywords

CV-QKD RQNN Neural network Information identification Signal processing 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (61177072) and Key Research and Development Program of Shandong Province (CN) (2017GGX201010).

References

  1. 1.
    Rogers, S.: Digital signal processing in telecommunications. Control Eng. Pract. 11, 1641 (1997)CrossRefGoogle Scholar
  2. 2.
    Grosshans, F., Assche, G.V., Wenger, J., et al.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Jouguet, P., Jacques, S.K., Leverrier, A., et al.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7, 378–381 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Jouguet, P., Jacques, S.K., Debuisschert, T., et al.: Field test of classical symmetric encryption with continuous variable quantum key distribution. Opt. Express 20, 14030–14041 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175, 175–179 (1984)MATHGoogle Scholar
  6. 6.
    Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 6, 1192–1195 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Elser, D., Bartley, T., Heim, B., et al.: Feasibility of free space quantum key distribution with coherent polarization states. New J. Phys. 11, 045014 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Lorenz, S., Korolkova, N., Leuchs, G.: Continuous variable quantum key distribution using polarization encoding and post selection. Appl. Phys. B 79, 273–279 (2004)CrossRefGoogle Scholar
  9. 9.
    Shaari, J.S., Bahari, A.A.: Improved two-way six-state protocol for quantum key distribution. Phys. Lett. A 45, 2962–2966 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Becir, A., El-Orany, F.A.A., Wahiddin, M.R.B.: Continuous-variable quantum key distribution protocols with eight-state discrete modulation. Int. J. Quantum Inf. 1, 181–186 (2012)MathSciNetMATHGoogle Scholar
  11. 11.
    Zhong, K., Lei, X., Li, S.Q.: Wiener filter based channel estimation for high-speed communication environments. Wirel. Pers. Commun. 69, 1819–1845 (2013)CrossRefGoogle Scholar
  12. 12.
    Wu, H.H., Jin, F.J., Lai, Y.L., Wang, L.: A stochastic filtering algorithm using SchrÄodinger equation. Acta Automat. Sinica 40, 2370–2376 (2014)CrossRefGoogle Scholar
  13. 13.
    Rupp, M.: Asymptotic equivalent analysis of the LMS algorithm under linearly filtered processes. EURASIP J. Adv. Sig. Pr. 1, 1–16 (2016)Google Scholar
  14. 14.
    Zhu, Z., Gao, X., et al.: Analysis on the adaptive filter based on LMS algorithm. Optik 11, 4698–4704 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Rao, K.R., Prasad Rao, P.V.R.D., et al.: Development of RLS algorithm for localization in wireless sensor networks. Procedia Comput. Sci. 65, 58–64 (2015)CrossRefGoogle Scholar
  16. 16.
    Dawes, R.L.: Quantum neurodynamics: neural stochastic filtering with the Schroedinger equation. IJCNN Proc. 1, 133–140 (1992)Google Scholar
  17. 17.
    Gandhi, V., Prasad, G., Coyle, D., et al.: Quantum neural network-based EEG filtering for a brain–computer interface. IEEE T. Neur. Net. Lear. 25, 278–288 (2014)CrossRefGoogle Scholar
  18. 18.
    Behera, L., Sundaram, B.: Stochastic filtering and speech enhancement using a recurrent quantum neural network. In: International Conference on Intelligent Sensing & Information Processing, Chennai, India, 4–7 January 2004Google Scholar
  19. 19.
    Behera, L., Kar, I., Elitzur, A.C.: A recurrent quantum neural network model to describe eye tracking of moving targets. Found. Phys. Lett. 18, 357–370 (2005)CrossRefMATHGoogle Scholar
  20. 20.
    Gandhi, V, McGinnity, T.M.: Quantum neural network based surface EMG signal filtering for control of robotic hand. In: International Joint Conference on Neural Networks, Dallas, TX, 4–9 August 2013Google Scholar
  21. 21.
    Brito, C.S.N., Gerstner, W.: Nonlinear Hebbian learning as a unifying principle in receptive field formation. PLoS Comput. Biol. 12, e1005070 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Lange, M., Biehl, M., Villmann, T.: Non-Euclidean principal component analysis by Hebbian learning. Neurocomputing 147, 107–119 (2015)CrossRefGoogle Scholar
  23. 23.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. ICPR 2, 28–31 (2004)Google Scholar
  24. 24.
    Long, T., Jiao, W., He, G., et al.: Automatic line segment registration using Gaussian mixture model and expectation-maximization algorithm. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 7, 1688–1699 (2014)CrossRefGoogle Scholar
  25. 25.
    Nguyen, H.D., Mclachlan, G.J.: Maximum likelihood estimation of Gaussian mixture models without matrix operations. Adv. Data Anal. Classif. 4, 371–394 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Teukolsky, S.A.: On the stability of the iterated Crank–Nicholson method in numerical relativity. Phys. Rev. D 8, 91–101 (2000)MathSciNetGoogle Scholar
  27. 27.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 1, 1–38 (1977)MathSciNetMATHGoogle Scholar
  28. 28.
    Lvovsky, A.I.: Continuous-variable optical quantum state tomography. Rev. Mod. Phys. 1, 299–332 (2005)Google Scholar
  29. 29.
    Lin, D.K., Huang, D., et al.: High performance reconciliation for continuous-variable quantum key distribution with LDPC code. Int. J. Quantum Inf. 13, 1550010 (2015)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Vallone, G., Ambrosio, V.D., Sponselli, A., et al.: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 6, 060503 (2014)CrossRefGoogle Scholar
  31. 31.
    Lingaiah, D.: Kalman filtering: theory and practice using MATLAB. IEEE Circ. Devices Mag. 4, 37–38 (2003)CrossRefGoogle Scholar
  32. 32.
    Rawat, M., Rawat, K.: Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks. IEEE T. Microw. Theory. 1, 95–100 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of RadiologyTaishan Medical UniversityTai’anChina
  2. 2.College of Physics and Information EngineeringFuzhou UniversityFuzhouChina

Personalised recommendations