Skip to main content
Log in

Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rogers, S.: Digital signal processing in telecommunications. Control Eng. Pract. 11, 1641 (1997)

    Article  Google Scholar 

  2. Grosshans, F., Assche, G.V., Wenger, J., et al.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003)

    Article  ADS  Google Scholar 

  3. Jouguet, P., Jacques, S.K., Leverrier, A., et al.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7, 378–381 (2013)

    Article  ADS  Google Scholar 

  4. Jouguet, P., Jacques, S.K., Debuisschert, T., et al.: Field test of classical symmetric encryption with continuous variable quantum key distribution. Opt. Express 20, 14030–14041 (2012)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175, 175–179 (1984)

    MATH  Google Scholar 

  6. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 6, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  7. Elser, D., Bartley, T., Heim, B., et al.: Feasibility of free space quantum key distribution with coherent polarization states. New J. Phys. 11, 045014 (2009)

    Article  ADS  Google Scholar 

  8. Lorenz, S., Korolkova, N., Leuchs, G.: Continuous variable quantum key distribution using polarization encoding and post selection. Appl. Phys. B 79, 273–279 (2004)

    Article  Google Scholar 

  9. Shaari, J.S., Bahari, A.A.: Improved two-way six-state protocol for quantum key distribution. Phys. Lett. A 45, 2962–2966 (2012)

    Article  ADS  Google Scholar 

  10. Becir, A., El-Orany, F.A.A., Wahiddin, M.R.B.: Continuous-variable quantum key distribution protocols with eight-state discrete modulation. Int. J. Quantum Inf. 1, 181–186 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Zhong, K., Lei, X., Li, S.Q.: Wiener filter based channel estimation for high-speed communication environments. Wirel. Pers. Commun. 69, 1819–1845 (2013)

    Article  Google Scholar 

  12. Wu, H.H., Jin, F.J., Lai, Y.L., Wang, L.: A stochastic filtering algorithm using SchrÄodinger equation. Acta Automat. Sinica 40, 2370–2376 (2014)

    Article  Google Scholar 

  13. Rupp, M.: Asymptotic equivalent analysis of the LMS algorithm under linearly filtered processes. EURASIP J. Adv. Sig. Pr. 1, 1–16 (2016)

    Google Scholar 

  14. Zhu, Z., Gao, X., et al.: Analysis on the adaptive filter based on LMS algorithm. Optik 11, 4698–4704 (2016)

    Article  ADS  Google Scholar 

  15. Rao, K.R., Prasad Rao, P.V.R.D., et al.: Development of RLS algorithm for localization in wireless sensor networks. Procedia Comput. Sci. 65, 58–64 (2015)

    Article  Google Scholar 

  16. Dawes, R.L.: Quantum neurodynamics: neural stochastic filtering with the Schroedinger equation. IJCNN Proc. 1, 133–140 (1992)

    Google Scholar 

  17. Gandhi, V., Prasad, G., Coyle, D., et al.: Quantum neural network-based EEG filtering for a brain–computer interface. IEEE T. Neur. Net. Lear. 25, 278–288 (2014)

    Article  Google Scholar 

  18. Behera, L., Sundaram, B.: Stochastic filtering and speech enhancement using a recurrent quantum neural network. In: International Conference on Intelligent Sensing & Information Processing, Chennai, India, 4–7 January 2004

  19. Behera, L., Kar, I., Elitzur, A.C.: A recurrent quantum neural network model to describe eye tracking of moving targets. Found. Phys. Lett. 18, 357–370 (2005)

    Article  MATH  Google Scholar 

  20. Gandhi, V, McGinnity, T.M.: Quantum neural network based surface EMG signal filtering for control of robotic hand. In: International Joint Conference on Neural Networks, Dallas, TX, 4–9 August 2013

  21. Brito, C.S.N., Gerstner, W.: Nonlinear Hebbian learning as a unifying principle in receptive field formation. PLoS Comput. Biol. 12, e1005070 (2016)

    Article  ADS  Google Scholar 

  22. Lange, M., Biehl, M., Villmann, T.: Non-Euclidean principal component analysis by Hebbian learning. Neurocomputing 147, 107–119 (2015)

    Article  Google Scholar 

  23. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. ICPR 2, 28–31 (2004)

    Google Scholar 

  24. Long, T., Jiao, W., He, G., et al.: Automatic line segment registration using Gaussian mixture model and expectation-maximization algorithm. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 7, 1688–1699 (2014)

    Article  Google Scholar 

  25. Nguyen, H.D., Mclachlan, G.J.: Maximum likelihood estimation of Gaussian mixture models without matrix operations. Adv. Data Anal. Classif. 4, 371–394 (2015)

    Article  MathSciNet  Google Scholar 

  26. Teukolsky, S.A.: On the stability of the iterated Crank–Nicholson method in numerical relativity. Phys. Rev. D 8, 91–101 (2000)

    MathSciNet  Google Scholar 

  27. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 1, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  28. Lvovsky, A.I.: Continuous-variable optical quantum state tomography. Rev. Mod. Phys. 1, 299–332 (2005)

    Google Scholar 

  29. Lin, D.K., Huang, D., et al.: High performance reconciliation for continuous-variable quantum key distribution with LDPC code. Int. J. Quantum Inf. 13, 1550010 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vallone, G., Ambrosio, V.D., Sponselli, A., et al.: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 6, 060503 (2014)

    Article  Google Scholar 

  31. Lingaiah, D.: Kalman filtering: theory and practice using MATLAB. IEEE Circ. Devices Mag. 4, 37–38 (2003)

    Article  Google Scholar 

  32. Rawat, M., Rawat, K.: Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks. IEEE T. Microw. Theory. 1, 95–100 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (61177072) and Key Research and Development Program of Shandong Province (CN) (2017GGX201010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhao Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Huang, C., Hou, K. et al. Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution. Quantum Inf Process 17, 109 (2018). https://doi.org/10.1007/s11128-018-1877-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1877-y

Keywords

Navigation