Advertisement

Improved separability criteria via some classes of measurements

  • Shu-Qian Shen
  • Ming Li
  • Xianqing Li-Jost
  • Shao-Ming Fei
Article

Abstract

The entanglement detection via local measurements can be experimentally implemented. Based on mutually unbiased measurements and general symmetric informationally complete positive-operator-valued measures, we present separability criteria for bipartite quantum states, which, by theoretical analysis, are stronger than the related existing criteria via these measurements. Two detailed examples are supplemented to show the efficiency of the presented separability criteria.

Keywords

Quantum states Entanglement detection Separability criteria 

Notes

Acknowledgements

The authors greatly indebted to the referee and the editor for their invaluable comments and suggestions. This work is supported by the Natural Science Foundation of Shandong Province (ZR2016AM23, ZR2016AQ06), the Fundamental Research Funds for the Central Universities (18CX02035A) and the NSF of China (11675113, 11775306).

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333–339 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Spengler, C., Huber, M., Brierley, S., Adaktylos, T., Hiesmayr, B.C.: Entanglement detection via mutually unbiased bases. Phys. Rev. A 86, 022311 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. USA 46, 570–579 (1960)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Durt, T., Englert, B.G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kalev, A., Gour, G.: Mutually unbiased measurements in finite dimensions. N. J. Phys. 16, 053038 (2014)CrossRefGoogle Scholar
  11. 11.
    Chen, B., Ma, T., Fei, S.M.: Entanglement detection using mutually unbiased measurements. Phys. Rev. A 89, 064302 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Shen, S.Q., Li, M., Duan, X.F.: Entanglement detection via some classes of measurements. Phys. Rev. A 91, 012326 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, L., Gao, T., Yan, F.L.: Separability criteria via sets of mutually unbiased measurements. Sci. Rep. 5, 13138 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Liu, L., Gao, T., Yan, F.L.: Detecting high-dimensional multipartite entanglement via some classes of measurements. Chin. Phys. B 27, 020306 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Liu, L., Gao, T., Yan, F.L.: Separability criteria via some classes of measurements. Sci. China Phys. Mech. Astron. 60, 100311 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Lu, Y.Y., Shen, S.Q., Xu, T.R., Yu, J.: New separability criteria based on two classes of measurements. Int. J. Theor. Phys. 57, 208–218 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rastegin, A.E.: Separability conditions based on local fine-grained uncertainty relations. Quantum Inf. Process. 15, 2621–2638 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wootters, W.K.: Quantum measurements and finite geometry. arXiv:quant-ph/0406032v2 (2004)
  19. 19.
    Kalev, A., Gour, G.: Construction of all general symmetric informationally complete measurements. J. Phys. A Math. Theor. 47, 335302 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Xi, Y., Zheng, Z.J., Zhu, C.J.: Entanglement detection via general SIC-POVMs. Quantum Inf. Process. 15, 5119–5128 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chen, B., Li, T., Fei, S.M.: General SIC-measurement based entanglement detection. Quantum Inf. Process. 14, 2281–2290 (2015)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Entanglement detection beyond the computable cross-norm or realignment criterion. Phys. Rev. A 77, 060301(R) (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Rastegin, A.E.: On uncertainty relations and entanglement detection with mutually unbiased measurements. Open Syst. Inf. Dyn. 22, 1550005 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    de Vicente, J.I.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624 (2007)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press, London (1990)zbMATHGoogle Scholar
  28. 28.
    Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shu-Qian Shen
    • 1
  • Ming Li
    • 1
  • Xianqing Li-Jost
    • 2
  • Shao-Ming Fei
    • 2
    • 3
  1. 1.College of ScienceChina University of PetroleumQingdaoPeople’s Republic of China
  2. 2.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  3. 3.School of Mathematical SciencesCapital Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations