Improved separability criteria via some classes of measurements

  • Shu-Qian Shen
  • Ming Li
  • Xianqing Li-Jost
  • Shao-Ming Fei


The entanglement detection via local measurements can be experimentally implemented. Based on mutually unbiased measurements and general symmetric informationally complete positive-operator-valued measures, we present separability criteria for bipartite quantum states, which, by theoretical analysis, are stronger than the related existing criteria via these measurements. Two detailed examples are supplemented to show the efficiency of the presented separability criteria.


Quantum states Entanglement detection Separability criteria 



The authors greatly indebted to the referee and the editor for their invaluable comments and suggestions. This work is supported by the Natural Science Foundation of Shandong Province (ZR2016AM23, ZR2016AQ06), the Fundamental Research Funds for the Central Universities (18CX02035A) and the NSF of China (11675113, 11775306).


  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  2. 2.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333–339 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Spengler, C., Huber, M., Brierley, S., Adaktylos, T., Hiesmayr, B.C.: Entanglement detection via mutually unbiased bases. Phys. Rev. A 86, 022311 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. USA 46, 570–579 (1960)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Durt, T., Englert, B.G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010)CrossRefMATHGoogle Scholar
  10. 10.
    Kalev, A., Gour, G.: Mutually unbiased measurements in finite dimensions. N. J. Phys. 16, 053038 (2014)CrossRefGoogle Scholar
  11. 11.
    Chen, B., Ma, T., Fei, S.M.: Entanglement detection using mutually unbiased measurements. Phys. Rev. A 89, 064302 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Shen, S.Q., Li, M., Duan, X.F.: Entanglement detection via some classes of measurements. Phys. Rev. A 91, 012326 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, L., Gao, T., Yan, F.L.: Separability criteria via sets of mutually unbiased measurements. Sci. Rep. 5, 13138 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Liu, L., Gao, T., Yan, F.L.: Detecting high-dimensional multipartite entanglement via some classes of measurements. Chin. Phys. B 27, 020306 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Liu, L., Gao, T., Yan, F.L.: Separability criteria via some classes of measurements. Sci. China Phys. Mech. Astron. 60, 100311 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Lu, Y.Y., Shen, S.Q., Xu, T.R., Yu, J.: New separability criteria based on two classes of measurements. Int. J. Theor. Phys. 57, 208–218 (2017)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rastegin, A.E.: Separability conditions based on local fine-grained uncertainty relations. Quantum Inf. Process. 15, 2621–2638 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wootters, W.K.: Quantum measurements and finite geometry. arXiv:quant-ph/0406032v2 (2004)
  19. 19.
    Kalev, A., Gour, G.: Construction of all general symmetric informationally complete measurements. J. Phys. A Math. Theor. 47, 335302 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Xi, Y., Zheng, Z.J., Zhu, C.J.: Entanglement detection via general SIC-POVMs. Quantum Inf. Process. 15, 5119–5128 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Chen, B., Li, T., Fei, S.M.: General SIC-measurement based entanglement detection. Quantum Inf. Process. 14, 2281–2290 (2015)ADSCrossRefMATHGoogle Scholar
  22. 22.
    Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Entanglement detection beyond the computable cross-norm or realignment criterion. Phys. Rev. A 77, 060301(R) (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Rastegin, A.E.: On uncertainty relations and entanglement detection with mutually unbiased measurements. Open Syst. Inf. Dyn. 22, 1550005 (2015)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    de Vicente, J.I.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624 (2007)MathSciNetMATHGoogle Scholar
  27. 27.
    Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press, London (1990)MATHGoogle Scholar
  28. 28.
    Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shu-Qian Shen
    • 1
  • Ming Li
    • 1
  • Xianqing Li-Jost
    • 2
  • Shao-Ming Fei
    • 2
    • 3
  1. 1.College of ScienceChina University of PetroleumQingdaoPeople’s Republic of China
  2. 2.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  3. 3.School of Mathematical SciencesCapital Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations