Hierarchically controlled remote preparation of an arbitrary single-qubit state by using a four-qubit \(|\chi \rangle \) entangled state

  • Peng-Cheng Ma
  • Gui-Bin Chen
  • Xiao-Wei Li
  • You-Bang Zhan


In this paper, we present a scheme for Hierarchically controlled remote preparation of an arbitrary single-qubit state via a four-qubit \(|\chi \rangle \) state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. It is shown that the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender’s original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to recover sender’s original state.


Hierarchically controlled remote state preparation Four-qubit \(|\chi \rangle \) state Projective measurement 



This work was supported by National Natural Science Foundation of China (Grant Nos. 11547023, 11604115); Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials opening project (No. JSKC17007). Huaian 533 talent project (Nos. HAA201737, HAA201728).


  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hillery, Bužek, M.V.: Quantum copying: fundamental inequalities. Phys. Rev. A 56, 1212 (1997)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59, 162 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A. 65, 042320 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Chau, H.F.: Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate. Phys. Rev. A. 66, 060302 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69, 052307 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A. 71, 012328 (2005)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lance, A.M., Symal, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A. 324, 420 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A. 72, 044301 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Tyc, T., Ralph, T.C., Lam, P.K.: Continuous-variable quantum-state sharing via quantum disentanglement. Phys. Rev. A. 71, 033814 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A. 74, 054303 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Gordon, G., Rigolin, G.: Generalized quantum-state sharing. Phys. Rev. A. 73, 062316 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, Q.Y., Zhang, Y.B., Zhang, L.L., Ma, P.C.: Schemes for splitting quantum information via tripartite entangled states. Int. J. Theor. Phys. 48, 3331 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, X.W., Zhang, D.Y., Tang, S.Q., Xie, L.J.: Multiparty hierarchical quantum-information splitting. J. Phys. B 44, 035505 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, X.W., Zhang, D.Y., Tang, S.Q., Zhan, X.G., You, K.M.: Hierarchical quantum information splitting with six-photon cluster states. Int. J. Theor. Phys. 49, 2691 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lo, K.H.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Zhan, Y.B.: Remote state preparation of a Greenberger–Horne–Zeilinger class state. Common. Theor. Phys. 43, 637 (2005)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ma, P.C., Zhan, Y.B.: Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state. Chin. Phys. B 17, 445 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Ma, P.C., Zhan, Y.B.: Scheme for remotely preparing a four-particle entangled cluster-type state. Opt. Commun. 283, 2640 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Luo, M.X., Chen, X.B., Ma, S.Y., Yang, Y.X., Hu, Z.M.: Deterministic remote preparation of an arbitrary W-class state with multiparty. J. Phys. B: At. Mol. Opt. Phys. 43, 065501 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Zhan, Y.B., Zhang, Q.Y., Shi, J.: Probabilistic joint remote preparation of a high-dimensional equatorial quantum state. Chin. Phys. B 19, 080310 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374, 4483 (2010)ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B: At. Mol. Opt. Phys. 44, 095501 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    An, N.B., Bich, C.T., Don, N.V.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570–3573 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Jiang, M., Dong, D.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B: At. Mol. Opt. Phys. 45, 205506 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Zhan, Y.B.: Deterministic remote preparation of arbitrary two- and three-qubit states. EPL 98, 40005 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Zhan, Y.B., Fu, H., Li, X.W., Ma, P.C.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 52, 2615 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Deterministic remote preparation of an asymmetric five-party three-qubit entangled state. Laser Phys. 26, 115203 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Babichev, S.A., Brezger, B., Lvovsky, A.I.: Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. Phys. Rev. Lett. 92, 047903 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    Hou, K., Wang, J., Yuan, H., Shi, S.H.: Multiparty-controlled remote preparation of two-particle state. Commun. Theor. Phys. 52, 848 (2009)ADSCrossRefzbMATHGoogle Scholar
  42. 42.
    Song, J.F., Wang, Z.Y.: Controlled remote preparation of a two-qubit state via positive operator-valued measure and two three-qubit entanglements. Int. J. Theor. Phys. 50, 2410 (2011)CrossRefzbMATHGoogle Scholar
  43. 43.
    Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Chen, N., Quan, D.X., Yang, H., Pei, C.X.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15, 1719–1729 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Huang, L., Zhao, H.X.: Controlled Remote State Preparation of an Arbitrary Two-Qubit State by Using GHZ States. Int. J. Theor. Phys. 56, 678 (2017)CrossRefzbMATHGoogle Scholar
  47. 47.
    Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66, 052318 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSCrossRefzbMATHGoogle Scholar
  49. 49.
    Wang, X.W., Yang, G.J.: Generation and discrimination of a type of four-partite entangled state. Phys. Rev. A 78, 024301 (2008)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Shi, Y.L., Mei, F., Yu, Y.F., Feng, X.L., Zhang, Z.M.: Generation of a genuine four-particle entangled state of trap ions. Quantum Inf. Process. 11, 229 (2012)CrossRefzbMATHGoogle Scholar
  51. 51.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)ADSCrossRefGoogle Scholar
  52. 52.
    Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41, 11 (1990)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    Kiesel, N., Schmid, C., Weber, U., Ursin, R., Weinfurter, H.: Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    Bao, X.H., Chen, T.Y., Zhang, Q., Yang, J., Zhang, H., Yang, T., Pan, J.W.: Optical nondestructive controlled-NOT gate without using entangled photons. Phys. Rev. Lett. 98, 170502 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Peng-Cheng Ma
    • 1
  • Gui-Bin Chen
    • 1
  • Xiao-Wei Li
    • 1
    • 2
  • You-Bang Zhan
    • 1
  1. 1.Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional MaterialsHuaiyin Normal UniversityHuaianChina
  2. 2.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina

Personalised recommendations