Entanglement degradation in the presence of the Kerr–Newman black hole

Article
  • 37 Downloads

Abstract

We investigate bipartite quantum correlations in the presence of the four-dimensional Kerr–Newman black hole using the negativity as a measure for the entanglement. We assume Alice and Rob initially share a maximally entangled state, and then Rob accelerates toward the event horizon \(h_{+}\). We find that when Rob accelerates uniformly toward the external horizon, the entanglement degrades for the Alice–Rob system and this degradation increases as Rob gets closer to the horizon. It is found that for the case Alice–AntiRob, no creation of quantum correlation occurs. Finally, we investigate the bipartite entanglement using an alternative entanglement measure, namely generalized concurrence, and we show that the results are in consistent with those obtained by negativity.

Keywords

Quantum entanglement Kerr–Newman black hole Negativity Generalized concurrence 

References

  1. 1.
    Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. B 83, 3081–3084 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. B 69, 2881–2884 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Crépeau, C., Josza, R., Peres, A., Wooters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Steane, A.M.: Quantum computing. Rep. Prog. Phys. 61, 117–173 (1998)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95 (2005). id.120404Google Scholar
  8. 8.
    Ling, Y., He, S., Qiu, W., Zhang, H.: Quantum entanglement of electromagnetic field in non-inertial reference frames. J. Phys Math. Theor. A 40, 9025–9032 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Datta, A.: Quantum discord between relatively accelerated observers. Phys. Rev. A 80 (2009). id. 052304Google Scholar
  10. 10.
    Wang, J., Deng, J., Jing, J.: Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A 81 (2010). id. 052120Google Scholar
  11. 11.
    Hwang, M.R., Park, D.K., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83 (2011). id. 012111Google Scholar
  12. 12.
    Martin-Martinez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83 (2011). id. 052306Google Scholar
  13. 13.
    Montero, M., Martin-Martinez, E.: Fermionic entanglement ambiguity in noninertial frames. Phys. Rev. A 83 (2011). id. 062323Google Scholar
  14. 14.
    Montero, M., Leon, J., Martin-Martinez, E.: Fermionic entanglement extinction in noninertial frames. Phys. Rev. A 84 (2011). id. 042320Google Scholar
  15. 15.
    Park, D.K.: Tripartite entanglement-dependence of tripartite non-locality in non-inertial frames. J. Phys. A Math. Theor. 45 (2012). article id. 415308, 10 ppGoogle Scholar
  16. 16.
    Hwang, M.R., Jung, E., Park, D.: Three-tangle in non-inertial frame. Class. Quantum Grav. 29, 1–1 (2012)MathSciNetMATHGoogle Scholar
  17. 17.
    Czachor, M.: Einstein–Podolsky–Rosen–Bohm experiment with relativistic massive particles. Phys. Rev. A 55, 72–77 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Alsing, P.M., Milburn, G.J.: Lorentz invariance of entanglement. Quantum Inf. Comput. 2, 487–512 (2002)MathSciNetMATHGoogle Scholar
  19. 19.
    Gingrich, R.M., Adami, C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89 (2002). id. 270402Google Scholar
  20. 20.
    Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95 (2005). id. 120404Google Scholar
  21. 21.
    Ling, Y., He, S., Qiu, W., Zhang, H.: Quantum entanglement of electromagnetic field in non-inertial reference frames. J. Phys. A 40, 9025–9032 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Pan, Q., Jing, J.: Degradation of nonmaximal entanglement of scalar and Dirac fields in noninertial frames. Phys. Rev. A 77 (2008). id. 024302Google Scholar
  23. 23.
    Pan, Q., Jing, J.: Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole. Phys. Rev. D 78 (2008). id. 065015Google Scholar
  24. 24.
    Martin-Martinez, E., Garay, L.J., Leon, J.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82 (2010). id. 064006Google Scholar
  25. 25.
    Park, D.: Entanglement degradation in the presence of (4 + n)-dimensional Schwarzschild black hole. Int. J. Quantum Inform. 11 (2013). id. 1350014-179Google Scholar
  26. 26.
    Gammie, C.F., Shapiro, S.L., McKinney, J.C.: Black hole spin evolution. Astrophys. J. 602, 312–319 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Wang, J.M., Chen, Y.M., Ho, L.C., McLure, R.J.: Evidence for rapidly spinning black holes in quasars. Astrophys. J. 642, L111–L114 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Ida, D., Oda, K.Y., Park, S.C.: Rotating black holes at future colliders: greybody factors for brane fields [Erratum: 2004PhRvD..69d9901I ], Phys. Rev. D 67 (2003) id. 064025Google Scholar
  29. 29.
    Bhaskara, V.S., Panigrahi, P.K.: Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange’s identity and wedge product. Quantum Inf. Process. 16 (2017). article id.118, p. 15Google Scholar
  30. 30.
    Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phy. Rev. Lett. 78, 5022–5025 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6, 918–919 (1965)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Boyer, R.H., Lindquist, R.W.: Maximal analytic extension of the Kerr metric. J. Math. Phys. 8, 265–281 (1967)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Rindler, W.: Kruskal space and the uniformly accelerated frame. Am. J. Phys. 34, 1174–1178 (1966)ADSCrossRefGoogle Scholar
  35. 35.
    Camargo, H.A., Socolovsky, M.: Rindler approximation to Kerr–Newman black hole. Euro. Phys. J. Plus 130 (2015). article id.230, p. 6Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Young Researchers and Elites Club, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Physics, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations