Skip to main content
Log in

Quantum demultiplexer of quantum parameter-estimation information in quantum networks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Monroe, C.: Quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2007)

    Google Scholar 

  2. U’Ren, A.B., Silberhorn, C., Banaszek, K., Walmsley, I.A.: Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. Phys. Rev. Lett. 93(9), 093601 (2004)

    Article  ADS  Google Scholar 

  3. Siomau, M., Fritzsche, S.: Evolution equation for entanglement of multiqubit systems. Phys. Rev. A 82(82), 13442–13444 (2010)

    Google Scholar 

  4. Gao, Y., Zhou, H., Zou, D., Peng, X., Du, J.: Preparation of Greenberger–Horne—Zeilinger and w states on a one-dimensional ising chain by global control. Phys. Rev. A 87(3), 379–388 (2013)

    Article  Google Scholar 

  5. Liu, S., Yu, R., Li, J., Wu, Y.: Generation of a multi-qubit w entangled state through spatially separated semiconductor quantum-dot-molecules in cavity-quantum electrodynamics arrays. J. Appl. Phys. 115(13), 1569 (2014)

    Google Scholar 

  6. Xiao, X., Yao, Y., Zhong, W.-J., Li, Y.-L., Xie, Y.-M.: Enhancing teleportation of quantum fisher information by partial measurements. Phys. Rev. A 93(1), 012307 (2016)

    Article  ADS  Google Scholar 

  7. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(390), 575 (1997)

    Article  ADS  MATH  Google Scholar 

  8. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  ADS  Google Scholar 

  9. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Tan, X., Zhang, X., Fang, J.: Perfect quantum teleportation by four-particle cluster state. Inf. Process. Lett. 116(5), 347–350 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using n-qubit linear cluster states. Opt. Commun. 284(4), 1082–1085 (2010)

    Article  ADS  Google Scholar 

  12. Hao, X., Wu, Y.: Quantum parameter estimation in the Unruh–DeWitt detector model. Ann. Phys. 372, 110–118 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Haine, S.A., Szigeti, S.S.: Quantum metrology with mixed states: when recovering lost information is better than never losing it. Phys. Rev. A 92(3), 032317 (2015)

    Article  ADS  Google Scholar 

  14. Hao, X., Wu, Y.: Quantum nonunital dynamics of spin-bath-assisted fisher information. AIP Adv. 6(4), 233601 (2016)

    Article  Google Scholar 

  15. Walmsley, I.A., Nunn, J.: Editorial: building quantum networks. Phys. Rev. Appl. 6, 040001 (2016)

    Article  ADS  Google Scholar 

  16. Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature (London) 484, 195 (2012)

    Article  ADS  Google Scholar 

  17. Behzadi, N., Rudsary, S.K., Salmasi, B.A.: Perfect routing of quantum information in regular cavity QED networks. Eur. Phys. J. D 67(12), 1–9 (2013)

    Article  Google Scholar 

  18. Munro, W.J., Harrison, K.A., Stephen, A.M., Devitt, S.J., Nemoto, K.: From quantum multiplexing to high-performance quantum networking. Nat. Photonics 4, 792 (2010)

    Article  ADS  Google Scholar 

  19. Weiss, U.: Quantum Dissipative Systems, 2nd edn. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  20. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  21. Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65(14), 1697–1700 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Watanabe, Y., Sagawa, T., Ueda, M.: Optimal measurement on noisy quantum systems. Phys. Rev. Lett. 104(2), 020401 (2010)

    Article  ADS  Google Scholar 

  23. Tan, Q.S., Huang, Y., Yin, X., Kuang, L.M., Wang, X.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)

    Article  ADS  Google Scholar 

  24. Wang, S.C., Yu, Z.W., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89(2), 022318 (2014)

    Article  ADS  Google Scholar 

  25. Katz, N., Korotkov, A.N.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312(5779), 1498–1500 (2006)

    Article  ADS  Google Scholar 

  26. Man, Z.X., An, N.B., Xia, Y.J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349(349), 209 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Collins, D., Stephens, J.: Depolarizing channel parameter estimation using noisy initial states. Phys. Rev. A 92, 032324 (2015)

    Article  ADS  Google Scholar 

  28. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

    Article  ADS  Google Scholar 

  29. Blok, M.S., Bonato, C., Markham, M.L., Twitchen, D.J., Dobrovitski, V.V., Hanson, R.: Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback. Nat. Phys. 10(3), 189–193 (2013)

    Article  Google Scholar 

  30. Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J.: Introduction to quantum noise, measurement and amplification. Rev. Mod. Phys. 82(2), 1155–1208 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Paraoanu, G.S.: Generalized partial measurements. Eur. Phys. Lett. 93, 64002 (2011)

    Article  ADS  Google Scholar 

  32. Paraoanu, G.S.: Extraction of information from a single quantum. Phys. Rev. A 83, 044101 (2011)

    Article  ADS  Google Scholar 

  33. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8(2), 117–120 (2011)

    Article  Google Scholar 

  34. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97(16), 166805 (2006)

    Article  ADS  Google Scholar 

  35. Qiu, L., Tang, G., Yang, X., Wang, A.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350(350), 137–145 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377(44), 3209–3215 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Behzadi, N., Bahram, A.: Enhancing quantum state transfer efficiency in binary-tree spin networks by partially collapsing measurements. arXiv:1611.03035

  38. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, Cambridge (1976)

    MATH  Google Scholar 

  39. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  40. Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Colloquium: non-markovian dynamics in open quantum systems. Rev. Mod. Phys. 88(2), 021002 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of Jiangsu Province under Grant No. BK20170376, the Innovation Project of Graduate Education of Jiangsu Province No. JGLX15-150, the Qing Lan Project of Jiangsu Province and the Graduate Creative Projects in USTS No. SKYCX16-015 and No. SKCX5-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Huang, Y., Wu, Y. et al. Quantum demultiplexer of quantum parameter-estimation information in quantum networks. Quantum Inf Process 17, 108 (2018). https://doi.org/10.1007/s11128-018-1868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1868-z

Keywords

Navigation