Skip to main content
Log in

Time-invariant discord: high temperature limit and initial environmental correlations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a thorough investigation of the phenomena of frozen and time-invariant quantum discord for two-qubit systems independently interacting with local reservoirs. Our work takes into account several significant effects present in decoherence models, which have not been yet explored in the context of time-invariant quantum discord, but which in fact must be typically considered in almost all realistic models. Firstly, we study the combined influence of dephasing, dissipation and heating reservoirs at finite temperature. Contrarily to previous claims in the literature, we show the existence of time-invariant discord at high temperature limit in the weak coupling regime and also examine the effect of thermal photons on the dynamical behavior of frozen discord. Secondly, we explore the consequences of having initial correlations between the dephasing reservoirs. We demonstrate in detail how the time-invariant discord is modified depending on the relevant system parameters such as the strength of the initial amount of entanglement between the reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A. 83(3), 032324 (2011)

    Article  ADS  MATH  Google Scholar 

  4. Streltsov, A., Kampermann, H., Bruss, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108(25), 250501 (2012)

    Article  ADS  Google Scholar 

  5. Chuan, T.K., Maillard, H., Modo, K., Paterek, T., Paternostro, M., Pianai, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109(7), 070501 (2012)

    Article  ADS  Google Scholar 

  6. Dakic, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)

    Article  Google Scholar 

  7. Boixo, S., Aolita, L., Cavalcanti, D., Modi, K., Winter, A.: Quantum locking of classical correlations and quantum discord of classical-quantum states. Int. J Quantum Inf. 9, 1643–1651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cornélio, M.F., de Oliveira, M.C., Fanchni, F.F.: Entanglement irreversibility from quantum discord and quantum deficit. Phys. Rev. Lett. 107(2), 020502 (2011)

    Article  ADS  Google Scholar 

  9. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  10. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  11. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58(4), 2733 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Addis, C., Karpat, G., Maniscalco, S.: Time-invariant discord in dynamically decoupled systems. Phys. Rev. A 92(6), 062109 (2015)

    Article  ADS  Google Scholar 

  14. Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104(20), 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. Xu, J.-S., Xu, X.-Y., Li, C.-F., Zhang, C.-J., Zou, X.-B., Guo, G.-C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)

    Google Scholar 

  16. Auccaise, R., Celeri, L.C., Soares-Pinto, D.O., de Azevedo, E.R., Maziero, J., Souza, A.M., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107(14), 140403 (2011)

    Article  ADS  Google Scholar 

  17. Mazzola, L., Piilo, J., Maniscalco, S.: Frozen discord in non-Markovian dephasing channels. Int. J. Quantum Inf. 9, 981–991 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haikka, P., Johnson, T.H., Maniscalco, S.: Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A. 87(1), 010103(R) (2013)

    Article  ADS  Google Scholar 

  19. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett 88(1), 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  21. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A. 81(5), 052107 (2010)

    Article  ADS  Google Scholar 

  22. Huang, Y.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88(1), 014302 (2013)

    Article  ADS  Google Scholar 

  23. Smirne, A., Kolodynski, J., Huelga, S.F., Demkowicz-Dobrzanski, R.: Ultimate precision limits for noisy frequency estimation. Phys. Rev. Lett. 116(12), 120801 (2016)

    Article  ADS  Google Scholar 

  24. Lankinen, J., Lyyra, H., Sokolov, B., Teittinen, J., Ziaei, B., Maniscalco, S.: Complete positivity, finite-temperature effects, and additivity of noise for time-local qubit dynamics. Phys. Rev. A. 93(5), 052103 (2016)

    Article  ADS  Google Scholar 

  25. Li, J.-G., Zou, J., Shao, B.: Non-Markovianity of the damped Jaynes–Cummings model with detuning. Phys. Rev. A 81(6), 062124 (2010)

    Article  ADS  Google Scholar 

  26. Breuer, H.-P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103(21), 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Luczka, J.: Spin in contact with thermostat: exact reduced dynamics. Phys. A 167, 919–934 (1990)

    Article  MathSciNet  Google Scholar 

  28. Palma, G.M., Suominen, K.-A., Ekert, A.-K.: Quantum computers and dissipation. Proc. R. Soc. London, Ser. A 452, 567–584 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Reina, J.H., Quiroga, L., Johnson, N.F.: Decoherence of quantum registers. Phys. Rev. A 65(3), 032326 (2002)

    Article  ADS  Google Scholar 

  30. Wißmann, S., Breuer, H.-P.: Role of entanglement for nonlocal memory effects. Phys. Rev. A 90(3), 032117 (2014)

    Article  ADS  Google Scholar 

  31. Giedke, G., Wolf, M.M., Krüger, O., Werner, R.F., Cirac, J.I.: Entanglement of formation for symmetric Gaussian states. Phys. Rev. Lett. 91(10), 107901 (2003)

    Article  ADS  Google Scholar 

  32. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105(2), 020503 (2010)

    Article  ADS  Google Scholar 

  33. Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105(3), 030501 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the University of Kurdistan. F. T. T. thanks R. Yousefjani for the useful discussions. G. K. is grateful to Sao Paulo Research Foundation (FAPESP) for the support given under the Grant Number 2012/18558-5. S. M. also acknowledges financial support from the Academy of Finland (Project No. 287750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Salimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabesh, F.T., Karpat, G., Maniscalco, S. et al. Time-invariant discord: high temperature limit and initial environmental correlations. Quantum Inf Process 17, 87 (2018). https://doi.org/10.1007/s11128-018-1853-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1853-6

Keywords

Navigation