# Time-optimal control with finite bandwidth

- 144 Downloads

## Abstract

Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

## Keywords

Time-optimal control Quantum control Quantum information processing## Notes

### Acknowledgements

This work was supported in part by the U.S. AFOSR Grant No. FA9550-12-1-0292 and by NSF Grant EECS1702716.

## Supplementary material

## References

- 1.Deffner, S., Campbell, S.: Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A
**50**, 453001 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 2.Deffner, S., Lutz, E.: Energy-time uncertainty relation for driven quantum systems. J. Phys. A
**46**(33), 335302 (2013)MathSciNetCrossRefzbMATHGoogle Scholar - 3.Salamon, P., Hoffmann, K.H., Rezek, Y., Kosloff, R.: Maximum work in minimum time from a conservative quantum system. Phys. Chem. Chem. Phys.
**11**(7), 1027–1032 (2009)CrossRefGoogle Scholar - 4.Hegerfeldt, G.C.: Driving at the quantum speed limit: optimal control of a two-level system. Phys. Rev. Lett.
**111**, 260501 (2013)ADSCrossRefGoogle Scholar - 5.Barnes, E.: Analytically solvable two-level quantum systems and landau-zener interferometry. Phys. Rev. A
**88**, 013818 (2013)ADSCrossRefGoogle Scholar - 6.del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limits in open system dynamics. Phys. Rev. Lett.
**110**, 050403 (2013)CrossRefGoogle Scholar - 7.Taddei, M.M., Escher, B.M., Davidovich, L., de Matos, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett.
**110**, 050402 (2013)ADSCrossRefGoogle Scholar - 8.Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett.
**111**, 010402 (2013)ADSCrossRefGoogle Scholar - 9.Bason, M.G., Viteau, M., Malossi, N., Huillery, P., Arimondo, E., Ciampini, D., Fazio, R., Giovannetti, V., Mannella, R., Morsch, O.: High-fidelity quantum driving. Nat. Phys.
**8**(2), 147–152 (2012)CrossRefGoogle Scholar - 10.Hofferberth, S., Fischer, B., Schumm, T., Schmiedmayer, J., Lesanovsky, I.: Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation. Phys. Rev. A
**76**, 013401 (2007)ADSCrossRefGoogle Scholar - 11.Jiménez-García, K., LeBlanc, L.J., Williams, R.A., Beeler, M.C., Qu, C., Gong, M., Zhang, C., Spielman, I.B.: Tunable spin-orbit coupling via strong driving in ultracold-atom systems. Phys. Rev. Lett.
**114**, 125301 (2015)ADSCrossRefGoogle Scholar - 12.Zaks, B., Stehr, D., Truong, T.-A., Petroff, P., Hughes, S., Sherwin, M.S.: Thz-driven quantum wells: Coulomb interactions and stark shifts in the ultrastrong coupling regime. New J. Phys.
**13**(8), 083009 (2011)ADSCrossRefGoogle Scholar - 13.Deng, C., Orgiazzi, J.-L., Shen, F., Ashhab, S., Lupascu, A.: Observation of Floquet states in a strongly driven artificial atom. Phys. Rev. Lett.
**115**, 133601 (2015)ADSCrossRefGoogle Scholar - 14.Ashhab, S., Johansson, J.R., Zagoskin, A.M., Nori, F.: Two-level systems driven by large-amplitude fields. Phys. Rev. A
**75**, 063414 (2007)ADSCrossRefGoogle Scholar - 15.Rudner, M.S., Shytov, A.V., Levitov, L.S., Berns, D.M., Oliver, W.D., Valenzuela, S.O., Orlando, T.P.: Quantum phase tomography of a strongly driven qubit. Phys. Rev. Lett.
**101**, 190502 (2008)ADSCrossRefGoogle Scholar - 16.Oliver, W.D., Valenzuela, S.O.: Large-amplitude driving of a superconducting artificial atom. Quantum Inf. Process.
**8**(2–3), 261–281 (2009)CrossRefGoogle Scholar - 17.Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., Garcia-Ripoll, J.J., Zueco, D., Hummer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys.
**6**(10), 772–776 (2010)CrossRefGoogle Scholar - 18.Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A., Maletinsky, P.: Strong mechanical driving of a single electron spin. Nat. Phys.
**11**(10), 820–824 (2015)CrossRefGoogle Scholar - 19.Stefanatos, D.: Fast cavity optomechanical cooling. Automatica
**73**, 71–75 (2016)MathSciNetCrossRefzbMATHGoogle Scholar - 20.Fuchs, G.D., Dobrovitski, V.V., Toyli, D.M., Heremans, F.J., Awschalom, D.D.: Gigahertz dynamics of a strongly driven single quantum spin. Science
**326**(5959), 1520–1522 (2009)ADSCrossRefGoogle Scholar - 21.Childress, L., McIntyre, J.: Multifrequency spin resonance in diamond. Phys. Rev. A
**82**, 033839 (2010)ADSCrossRefGoogle Scholar - 22.Scheuer, J., Kong, X., Said, R.S., Chen, J., Kurz, A., Marseglia, L., Du, J., Hemmer, P.R., Montangero, S., Calarco, T., Naydenov, B., Jelezko, F.: Precise qubit control beyond the rotating wave approximation. New J. Phys.
**16**(9), 093022 (2014)ADSCrossRefGoogle Scholar - 23.Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D
**120**(1–2), 188–195 (1998)CrossRefGoogle Scholar - 24.Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time-optimal quantum evolution. Phys. Rev. Lett.
**96**, 060503 (2006)ADSCrossRefzbMATHGoogle Scholar - 25.Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A
**67**, 052109 (2003)ADSCrossRefGoogle Scholar - 26.Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett.
**103**(24), 240501 (2009)ADSCrossRefGoogle Scholar - 27.Boscain, U., Charlot, G., Gauthier, J.-P., Guerin, S., Jauslin, H.-R.: Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys.
**43**(5), 2107–2132 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 28.D’Alessandro, D., Dahleh, M.: Optimal control of two-level quantum systems. IEEE Trans. Autom. Control
**46**(6), 866–876 (2001)MathSciNetCrossRefzbMATHGoogle Scholar - 29.Albertini, F., D’Alessandro, D.: Minimum time optimal synthesis for two level quantum systems. J. Math. Phys.
**56**(1), 012106 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 30.London, P., Balasubramanian, P., Naydenov, B., McGuinness, L.P., Jelezko, F.: Strong driving of a single spin using arbitrarily polarized fields. Phys. Rev. A
**90**, 012302 (2014)ADSCrossRefGoogle Scholar - 31.Shim, J.H., Lee, S.-J., Yu, K.-K., Hwang, S.-M., Kim, K.: Strong pulsed excitations using circularly polarized fields for ultra-low field nmr. J. Mag. Res.
**239**, 87–90 (2014)ADSCrossRefGoogle Scholar - 32.Boscain, U., Mason, P.: Time minimal trajectories for a spin 1/2 particle in a magnetic field. J. Math. Phys.
**47**(6), 062101 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 33.Billig, Y.: Time-optimal decompositions in su(2). Quantum Inf. Process.
**12**(2), 955–971 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 34.Aiello, C.D., Allegra, M., Hemmerling, B., Wan, X., Cappellaro, P.: Algebraic synthesis of time-optimal unitaries in SU(2) with alternating controls. Quantum Inf Process
**14**(9), 3233–3256 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 35.Billig, Y.: Optimal attitude control with two rotation axes. ArXiv:1409.3102, September (2014)
- 36.Avinadav, C., Fischer, R., London, P., Gershoni, D.: Time-optimal universal control of two-level systems under strong driving. Phys. Rev. B
**89**, 245311 (2014)ADSCrossRefGoogle Scholar - 37.Barbara, T.M., Martin, J.F., Wurl, J.G.: Phase transients in NMR probe circuits. J. Mag. Res.
**93**(3), 497–508 (1991)ADSGoogle Scholar - 38.Borneman, T.W., Cory, D.G.: Bandwidth-limited control and ringdown suppression in high-q resonators. J. Mag. Res.
**225**, 120–129 (2012)ADSCrossRefGoogle Scholar - 39.Tibbetts, K.W.M., Brif, C., Grace, M.D., Donovan, A., Hocker, D.L., Ho, T.-S., Wu, R.-B., Rabitz, H.: Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Phys. Rev. A
**86**, 062309 (2012)ADSCrossRefGoogle Scholar - 40.Pontryagin, L.S.: Mathematical Theory of Optimal Processes. Taylor & Francis, Milton Park (1987)zbMATHGoogle Scholar
- 41.Garon, A., Glaser, S.J., Sugny, D.: Time-optimal control of SU(2) quantum operations. Phys. Rev. A
**88**, 043422 (2013)ADSCrossRefGoogle Scholar - 42.Lloyd, S., Montangero, S.: Information theoretical analysis of quantum optimal control. Phys. Rev. Lett.
**113**, 010502 (2014)ADSCrossRefGoogle Scholar - 43.Moore, K., Hsieh, M., Rabitz, H.: On the relationship between quantum control landscape structure and optimization complexity. J. Chem. Phys.
**128**(15), 154117 (2008)ADSCrossRefGoogle Scholar - 44.Moore, K.W., Rabitz, H.: Exploring constrained quantum control landscapes. J. Chem. Phys.
**137**(13), 134113 (2012)ADSCrossRefGoogle Scholar - 45.Rach, N., Müller, M.M., Calarco, T., Montangero, S.: Dressing the chopped-random-basis optimization: a bandwidth-limited access to the trap-free landscape. Phys. Rev. A
**92**, 062343 (2015)ADSCrossRefGoogle Scholar - 46.Aiello, C.D., Cappellaro, P.: Time-optimal control by a quantum actuator. Phys. Rev. A
**91**, 042340 (2015)ADSCrossRefGoogle Scholar - 47.Gibbs, J.W.: Fourier’s series. Nature
**59**, 200 (1898)ADSCrossRefzbMATHGoogle Scholar - 48.Nielsen, M.A.: A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A
**303**, 249 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 49.Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A
**57**(1), 127–137 (1998)ADSMathSciNetCrossRefGoogle Scholar - 50.Kallush, S., Khasin, M., Kosloff, R.: Quantum control with noisy fields: computational complexity versus sensitivity to noise. N. J. Phys.
**16**(1), 015008 (2014)CrossRefGoogle Scholar - 51.Romano, R., D’Alessandro, D.: Minimum time control of a pair of two-level quantum systems with opposite drifts. J. Phys. Math. Gen.
**49**, 345303 (2016)MathSciNetCrossRefzbMATHGoogle Scholar - 52.Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A
**63**, 032308 (2001)ADSCrossRefGoogle Scholar - 53.Lapert, M., Zhang, Y., Braun, M., Glaser, S.J., Sugny, D.: Singular extremals for the time-optimal control of dissipative spin \(\frac{1}{2}\) particles. Phys. Rev. Lett.
**104**, 083001 (2010)ADSCrossRefGoogle Scholar - 54.Sugny, D., Kontz, C., Jauslin, H.R.: Time-optimal control of a two-level dissipative quantum system. Phys. Rev. A
**76**, 023419 (2007)ADSCrossRefGoogle Scholar - 55.Van Damme, L., Zeier, R., Glaser, S.J., Sugny, D.: Application of the pontryagin maximum principle to the time-optimal control in a chain of three spins with unequal couplings. Phys. Rev. A
**90**, 013409 (2014)ADSCrossRefGoogle Scholar - 56.Chambrion, T., Mason, P., Sigalotti, M., Boscain, U.: Controllability of the discrete-spectrum schroedinger equation driven by an external field. Annales de l’Institut Henri Poincare (C) Non Linear. Analysis
**26**(1), 329–349 (2009)zbMATHGoogle Scholar - 57.Yuan, H., Glaser, S.J., Khaneja, N.: Geodesics for efficient creation and propagation of order along ising spin chains. Phys. Rev. A
**76**(1), 012316 (2007)ADSCrossRefGoogle Scholar - 58.Yuan, H., Khaneja, N.: Efficient synthesis of quantum gates on a three-spin system with triangle topology. Phys. Rev. A
**84**, 062301 (2011)ADSCrossRefGoogle Scholar - 59.Motzoi, F., Gambetta, J.M., Merkel, S.T., Wilhelm, F.K.: Optimal control methods for rapidly time-varying hamiltonians. Phys. Rev. A
**84**, 022307 (2011)ADSCrossRefGoogle Scholar - 60.Bartels, B., Mintert, F.: Smooth optimal control with floquet theory. Phys. Rev. A
**88**, 052315 (2013)ADSCrossRefGoogle Scholar - 61.Caneva, T., Calarco, T., Montangero, S.: Chopped random-basis quantum optimization. Phys. Rev. A
**84**, 022326 (2011)ADSCrossRefGoogle Scholar - 62.Doria, P., Calarco, T., Montangero, S.: Optimal control technique for many-body quantum dynamics. Phys. Rev. Lett.
**106**, 190501 (2011)ADSCrossRefGoogle Scholar - 63.Assémat, E., Lapert, M., Zhang, Y., Braun, M., Glaser, S.J., Sugny, D.: Simultaneous time-optimal control of the inversion of two spin-\(\frac{1}{2}\) particles. Phys. Rev. A
**82**, 013415 (2010)ADSCrossRefGoogle Scholar - 64.Burgarth, D., Maruyama, K., Murphy, M., Montangero, S., Calarco, T., Nori, F., Plenio, M.B.: Scalable quantum computation via local control of only two qubits. Phys. Rev. A
**81**(4), 040303 (2010)ADSCrossRefzbMATHGoogle Scholar - 65.Romano, R.: Geometric analysis of minimum-time trajectories for a two-level quantum system. Phys. Rev. A
**90**, 062302 (2014)ADSCrossRefGoogle Scholar - 66.Ashhab, S., de Groot, P.C., Nori, F.: Speed limits for quantum gates in multiqubit systems. Phys. Rev. A
**85**, 052327 (2012)ADSCrossRefGoogle Scholar - 67.Machnes, S., Tannor, D.J., Wilhelm, F.K., Assemat, E.: Gradient optimization of analytic controls: the route to high accuracy quantum optimal control (2015). ArXiv:1507.04261
- 68.Boscain, U., Chitour, Y.: Time-optimal synthesis for left-invariant control systems on \(so(3)\). SIAM J. Control Optim.
**44**, 111 (2005)MathSciNetCrossRefzbMATHGoogle Scholar - 69.Boscain, U., Groenberg, F., Long, R., Rabitz, H.: Minimal time trajectories for two-level quantum systems with two bounded controls. J. Math. Phys.
**55**(6), 062106 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 70.Piovan, G., Bullo, F.: On coordinate-free rotation decomposition: Euler angles about arbitrary axes. IEEE Trans. Robot.
**28**(3), 728–733 (2012)CrossRefGoogle Scholar