Advertisement

Quantum iSWAP gate in optical cavities with a cyclic three-level system

Article
  • 113 Downloads

Abstract

In this paper we present a scheme to directly implement the iSWAP gate by passing a cyclic three-level system across a two-mode cavity quantum electrodynamics. In the scheme, a three-level \(\Delta \)-type atom ensemble prepared in its ground state mediates the interaction between the two-cavity modes. For this theoretical model, we also analyze its performance under practical noise, including spontaneous emission and the decay of the cavity modes. It is shown that our scheme may have a high fidelity under the practical noise.

Keywords

iSWAP gate Cavity quantum electrodynamics Spontaneous emission 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant Nos. 11674253, 11674089,11725524 and 61471356.

References

  1. 1.
    Yavuz, D.D.: Single photon SWAP gate using electromagnetically induced transparency. Phys. Rev. A 71, 053816 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Yao, W., Liu, R.B., Sham, L.J.: Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005)ADSCrossRefMATHGoogle Scholar
  5. 5.
    Liu, Y.C., Luan, X.S., Li, H.K., Gong, Q.H., Wong, C.W., Xiao, Y.F.: Coherent polariton dynamics in coupled highly dissipative cavities. Phys. Rev. Lett. 112, 213602 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Astafiev, O., Zagoskin Jr., A.M., Abdumalikov, A.A., Paskin, Y.A., Yamamoto, T., Inomata, K., Nakamura, Y., Tsai, J.S.: Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Steiner, M., Meyer, H.M., Reichel, J., Köhl, M.: Photon Emission and Absorption of a Single Ion Coupled to an Optical-Fiber Cavity. Phys. Rev. Lett. 113, 263003 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Cirac, I.J., Zoller, P.: Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Rempe, G., Thompson, R.J., Brecha, R.J., Lee, W.D., Kimble, H.J.: Optical bistability and photon statistics in cavity quantum electrodynamics. Phys. Rev. Lett. 67, 1727 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates Phys. Rev. Lett. 74, 4087 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Schön, C., Hammerer, K., Wolf, M.M., Cirac, J.I., Solano, E.: Sequential generation of matrix-product states in cavity \(QED\). Phys. Rev. A 75, 032311 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Gershenfeld, N.A., Chuang, I.L.: Science. Bulk spin-resonance quantum computation 275, 350 (1997)Google Scholar
  14. 14.
    Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Zeng, H.S., Wang, Q., Fang, X.M., Kuang, L.M.: Universal quantum gates between distant quantum dot spins. Phys. Lett. A 374, 2129 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Brennen, G.K., Caves, C.M., Jessen, P.S., Deutsch, I.H.: Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, E.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Cirac, J.I., Zoller, P.: Quantum Computations with Trapped ions. Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Knill, E., Laflamme, R., Milbum, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Xiao, Y.F., Zou, X.B., He, Z.F., Guo, G.C.: Quantum phase gate in an optical cavity with atomic cloud. Phys. Rev. A 74, 044303 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Lin, G.W., Zou, X.B., Ye, M.Y., Lin, X.M., Guo, G.C.: Quantum SWAP gate in an optical cavity with an atomic cloud. Phys. Rev. A 77, 064301 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Shu, J., Zou, X.B., Xiao, Y.F., Guo, G.C.: Quantum phase gate of photonic qubits in a cavity QED system. Phys. Rev. A 75, 044302 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Sangouard, N., Lacour, X., Guerin, S., Jauslin, H.R.: Fast SWAP gate by adiabatic passage. Phys. Rev. A 72, 062309 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, B., Duan, L.M.: Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation. Phys. Rev. A 75, 050304(R) (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Koshino, K., Ishizaka, S., Nakamura, Y.: Deterministic photon-photon SWAP gate using a \(\Lambda \) system. Phys. Rev. A 82, 010301(R) (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Wang, H., Burkard, G.: Mechanically induced two-qubit gates and maximally entangled states for single electron spins in a carbon nanotube. Phys. Rev. B 92, 195432 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Salathé, Y., Mondal, M., Opplier, M., Heinsoo, J., Kurpiers, P., Potočnik, A., Mezzacapo, A., Las Heras, U., Lamata, L., Solano, E., Filipp, S., Wallraff, A.: Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X 5, 021027 (2015)Google Scholar
  32. 32.
    Andrianov, S.N., Moiseev, S.A.: Fast and robust two- and three-qubit swapping gates on multi-atomic ensembles in quantum electrodynamic cavity. arXiv1103, 3098 (2011)Google Scholar
  33. 33.
    Liu, A.P., Wen, J.J., Cheng, L.Y., Su, S.L., Chen, L., Wang, H.F., Zhang, S.: Quantum cloning based on iSWAP gate with nitrogen-vacancy centers in photonic crystal cavities. Opt. Communications 333, 187–192 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Luo, M.X., Li, H.R., Wang, X.J.: Distributed atomic quantum information processing via optical fibers. Sci. Rep. 7, 1234 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefMATHGoogle Scholar
  36. 36.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Ry. Soc. London A 439, 533 (1992)ADSMathSciNetMATHGoogle Scholar
  37. 37.
    Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Serra, S.M., Villas-Boas, C.J., de Almeida, N.G., Moussa, M.H.Y.: Frequency up-and down-conversions in two-mode cavity quantum electrodynamics. Phys. Rev. A 71, 045802 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Guzman, R., Retamal, J.C., Solano, E., Zagury, N.: Field squeeze operators in optical cavities with atomic ensembles. Phys. Rev. Lett. 96, 010502 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Parkins, A.S., Solano, E., Cirac, J.I.: Unconditional two-mode squeezing of separated atomic ensembles. Phys. Rev. Lett. 96, 053602 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Joshi, A., Hassan, S.S., Xiao, M.: Generation of a two-mode generalized coherent state in a cavity QED system. Phys. Lett. A 367, 415 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 103604 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Chouikh, A., Said, T., Essammouni, K., Bennai, M.: Implementation of universal two- and three-qubit quantum gates in a cavity QED. Opt. Quant. Electron. 48, 463 (2016)CrossRefGoogle Scholar
  44. 44.
    Zubairy, M.S., Kim, M., Scully, M.O.: Cavity-QED-based quantum phase gate. Phys. Rev. A 68, 033820 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    Shao, X.Q., Chen, L., Zhang, S., Zhao, Y.F.: Swap gate and controlled swap gate base on a single resonant interaction with cavity quantum electrodynamics. Phys. Scr. 79, 065004 (2009)ADSCrossRefMATHGoogle Scholar
  46. 46.
    Plenio, M.B., Knight, P.L.: The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    Li, Y., Zheng, L., Liu, Y.X., Sun, C.P.: Correlated photons and collective excitations of a cyclic atomic ensemble. Phys. Rev. A 73, 043805 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, Franco: Optical selection rules and phase-dependent adiabatic State Control in a superconducting quantum Circuit. Phys. Rev. Lett. 95, 087001 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    Li, Y., Bruder, C., Sun, C.P.: Generalized stern-gerlach effect for chiral molecules. Phys. Rev. Lett. 99, 130403 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    Kral, P., Shapiro, M.: Cyclic population transfer in quantum systems with broken symmetry. Phys. Rev. Lett. 87, 183002 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    Gu, X., Frisk Kockumb, A., Miranowicz, A., Liu, Y.X., Nori, Franco: Microwave photonics with superconducting quantum circuits. arXiv:1707.02046 (2017)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and TechnologyWuhan UniversityWuhanChina
  2. 2.State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina
  3. 3.School of ScienceHubei University of TechnologyWuhanChina
  4. 4.Key Laboratory of Quantum Information, Chinese Academy of SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations