Advertisement

Multi-server blind quantum computation over collective-noise channels

  • Min XiaoEmail author
  • Lin Liu
  • Xiuli Song
Article
  • 168 Downloads

Abstract

Blind quantum computation (BQC) enables ordinary clients to securely outsource their computation task to costly quantum servers. Besides two essential properties, namely correctness and blindness, practical BQC protocols also should make clients as classical as possible and tolerate faults from nonideal quantum channel. In this paper, using logical Bell states as quantum resource, we propose multi-server BQC protocols over collective-dephasing noise channel and collective-rotation noise channel, respectively. The proposed protocols permit completely or almost classical client, meet the correctness and blindness requirements of BQC protocol, and are typically practical BQC protocols.

Keywords

Blind quantum computation Multi-server BQC Logical Bell states Collective-dephasing noise Collective-rotation noise 

Notes

Acknowledgements

The project were supported by the National Key R&D Program of China under Grant 2017YFB0802300; and Foundation Science and Forefront Technology of Chongqing Science and Technology Commission of China under Grant No. cstc2016jcyjA0571.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10 Anniversary edn. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Morimae, T., Fujii, K.: Blind quantum computation protocol in which Alice only makes measurements. Phys. Rev. A 87(5), 050301 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 09). IEEE. pp. 517–526 (2009)Google Scholar
  4. 4.
    Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Comput. 5(6), 456–466 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2), 022312 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Chien, C.H., Meter, R.V., Kuo, S.Y.: Fault-tolerant operations for universal blind quantum computation. ACM J. Emerg. Technol. Comput. Syst. JETC 12(1), 9 (2015)Google Scholar
  7. 7.
    Takeuchi, Y., Fujii, K., Ikuta, R., et al.: Blind quantum computation over a collective-noise channel. Phys. Rev. A 93(5), 052307 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Sheng, Y.B., Zhou, L.: Blind Quantum Computation with Noise Environment. arXiv:1609.08902 (2016)
  9. 9.
    Fitzsimons, J.F., Kashefi, E.: Unconditionally Verifiable Blind Computation. arXiv:1203.5217 (2012)
  10. 10.
    Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with weak coherent pulses. Phys. Rev. Lett. 108(20), 200502 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Morimae, T., Koshiba, T.: Impossibility of Perfectly-Secure Delegated Quantum Computing for Classical Client. arXiv:1407.1636 (2014)
  12. 12.
    Aaronson, S., Cojocaru, A., Gheorghiu, A., et al.: On the Implausibility of Classical Client Blind Quantum Computing. arXiv:1704.08482 (2017)
  13. 13.
    Mantri, A., Demarie, T.F., Menicucci, N.C., et al.: Flow ambiguity: A path towards classically driven blind quantum computation. Phys. Rev. X 7(3), 031004 (2017)Google Scholar
  14. 14.
    Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low T-gate complexity. In: Annual Cryptology Conference, pp. 609–629. Springer, Berlin (2015)Google Scholar
  15. 15.
    Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption for polynomial-sized circuits. In: Annual Cryptology Conference. pp. 3–32. Springer, Berlin (2016)Google Scholar
  16. 16.
    Morimae, T., Fujii, K.: Secure entanglement distillation for double-server blind quantum computation. Phys. Rev. Lett. 111(2), 020502 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Zhou, L., Sheng, Y.B.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)CrossRefGoogle Scholar
  18. 18.
    Li, Q., Chan, W.H., Wu, C., et al.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89(4), 040302 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Bennett, C.H., Brassard, G., Popescu, S., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., et al.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dür, W., Briegel, H.J.: Entanglement purification and quantum error correction. Rep. Prog. Phys. 70(8), 1381 (2007)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Li, X.H., Zhao, B.K., Sheng, Y.B., et al.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inform. 7(08), 1479–1489 (2009)CrossRefzbMATHGoogle Scholar
  25. 25.
    Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290(5491), 498C501 (2000)CrossRefGoogle Scholar
  26. 26.
    Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91(8), 087901 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Yang, C.W., Tsai, C.W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. Mech. Astron. 54(3), 496–501 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Ye, T.Y.: Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise. Sci. Sin. Phys. Mech. Astron. 45(4), 40301 (2015)CrossRefGoogle Scholar
  29. 29.
    Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14(4), 1469–1486 (2015)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Wu, D., Lv, H.J., Xie, G.J.: Robust anti-collective noise quantum secure direct dialogue using logical bell states. Int. J. Theor. Phys. 55(1), 457–469 (2016)CrossRefzbMATHGoogle Scholar
  31. 31.
    Ye, T.Y.: Fault-tolerant quantum dialogue without information leakage based on entanglement swapping between two logical bell states. Commun. Theor. Phys. 63(4), 431 (2015)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Ye, T.Y.: Fault-tolerant authenticated quantum dialogue using logical Bell states. Quantum Inf. Process. 14(9), 3499–3514 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14(4), 1487–1499 (2015)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Kempe, J., Bacon, D., Lidar, D., Whaley, K.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63(4), 042307 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Gu, B., Mu, L., Ding, L., et al.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283(15), 3099–3103 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Cyber Security and Information LawChongqing University of Posts and TelecommunicationsChongqingChina
  2. 2.College of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqingChina

Personalised recommendations