Skip to main content
Log in

Resonance fluorescence microscopy via three-dimensional atom localization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman–Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ficek, Z., Swain, S.: Quantum Interference and Coherence: Theory and Experiments. Springer Series in Optical Sciences. Springer, Berlin (2005)

    MATH  Google Scholar 

  2. Agarwal, G.S.: Quantum Optics. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  3. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  Google Scholar 

  4. Mompart, J., Corbalan, R.: Lasing without inversion. J. Opt. B: Quantum Semiclass. Opt. 2, R7–R24 (2000)

    Article  ADS  Google Scholar 

  5. Wu, Y., Yang, X.: Electromagnetically induced transparency in \(V\)-, \(\Lambda \)-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 71, 053806 (2005)

    Article  ADS  Google Scholar 

  6. Schmidt, H., Imamoglu, A.: Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996)

    Article  ADS  Google Scholar 

  7. Harris, S.E., Yamamoto, H.: Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611–3614 (1998)

    Article  ADS  Google Scholar 

  8. Lukin, M.D., Yelin, S.F., Fleischhauer, M., Scully, M.O.: Quantum interference effects induced by interacting dark resonances. Phys. Rev. A 60, 3225–3228 (1999)

    Article  ADS  Google Scholar 

  9. Li, J.H., Yang, X.X.: Enhanced narrow spectral line and double electromagnetically induced two-photon transparency induced by double dark resonances. Eur. Phys. J. D 41, 563–569 (2007)

    Article  ADS  Google Scholar 

  10. Dutta, B.K., Mahapatra, P.K.: Nonlinear optical effects in a doubly driven four-level atom. Phys. Scr. 75, 345–353 (2007)

    Article  ADS  Google Scholar 

  11. Wu, Y., Saldana, J., Zhu, Y.: Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys. Rev. A 67, 013811 (2003)

    Article  ADS  Google Scholar 

  12. Wu, Y., Payne, M.G., Hagley, E.W., Deng, L.: Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference. Opt. Lett. 29, 2294–2296 (2004)

    Article  ADS  Google Scholar 

  13. Wu, Y., Yang, X.: Highly efficient four-wave mixing in double-\(\Lambda \) system in ultraslow propagation regime. Phys. Rev. A 70, 053818 (2004)

    Article  ADS  Google Scholar 

  14. Wu, Y.: Two-color ultraslow optical solitons via four-wave mixing in cold-atom media. Phys. Rev. A 71, 053820 (2005)

    Article  ADS  Google Scholar 

  15. Wu, Y., Yang, X.: Giant Kerr nonlinearities and solitons in a crystal of molecular magnets. Appl. Phys. Lett. 91, 094104 (2007)

    Article  ADS  Google Scholar 

  16. Anton, M.A., Calderon, O.G., Melle, S., Gonzalo, I., Carreno, F.: All-optical switching and storage in a four-level tripod-type atomic system. Opt. Commun. 268, 146–154 (2006)

    Article  ADS  Google Scholar 

  17. Mahmoudi, M., Mousavi, S.M., Sahrai, M.: Controlling the optical bistability via interacting dark-state resonances. Eur. Phys. J. D 57, 241–246 (2010)

    Article  ADS  Google Scholar 

  18. Storey, P., Collett, M., Walls, D.F.: Measurement-induced diffraction and interference of atoms. Phys. Rev. Lett. 68, 472–475 (1992)

    Article  ADS  Google Scholar 

  19. Thomas, J.E., Wang, L.J.: Precision position measurement of moving atoms. Phys. Rep. 262, 311–366 (1995)

    Article  ADS  Google Scholar 

  20. Proite, N.A., Simmons, Z.J., Yavuz, D.D.: Observation of atomic localization using electromagnetically induced transparency. Phys. Rev. A 83, 041803(R) (2011)

    Article  ADS  Google Scholar 

  21. Miles, J.A., Simmons, Z.J., Yavuz, D.D.: Subwavelength localization of atomic excitation using electromagnetically induced transparency. Phys. Rev. A 83, 041803(R) (2011)

    Article  ADS  Google Scholar 

  22. Letokhov, V.: Laser Control of Atoms and Molecules. Oxford University Press, New York (2007)

    Google Scholar 

  23. Johnson, K.S., Thywissen, J.H., Dekker, N.H., Berggren, K.K., Chu, A.P., Younkin, R., Prentiss, M.: Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998)

    Article  ADS  Google Scholar 

  24. Collins, G.P.: Gaseous Bose-Einstein condensate finally observed. Phys. Today 49, 18–21 (1996)

    Google Scholar 

  25. Storey, P., Collett, M., Walls, D.F.: Atom-position resolution by quadrature-field measurement. Phys. Rev. A 47, 405–418 (1993)

    Article  ADS  Google Scholar 

  26. Kunze, S., Dieckmann, K., Rempe, G.: Diffraction of atoms from a measurement induced grating. Phys. Rev. Lett. 78, 2038–2041 (1997)

    Article  ADS  Google Scholar 

  27. Herkomer, A.M., Schleich, W.P., Zubairy, M.S.: Autler–Townes microscopy on a single atom. J. Mod. Opt. 44, 2507–2513 (1997)

    Article  ADS  Google Scholar 

  28. Qamar, S., Zhu, S.Y., Zubairy, M.S.: Atom localization via resonance fluorescence. Phys. Rev. A 61, 063806 (2000)

    Article  ADS  Google Scholar 

  29. Paspalakis, E., Knight, P.L.: Localizing an atom via quantum interference. Phys. Rev. A 63, 065802 (2001)

    Article  ADS  Google Scholar 

  30. Ghafoor, F., Qamar, S., Zubairy, M.S.: Atom localization via phase and amplitude control of the driving field. Phys. Rev. A 65, 043819 (2002)

    Article  ADS  Google Scholar 

  31. Sahrai, M., Tajalli, H., Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys. Rev. A 72, 013820 (2005)

    Article  ADS  Google Scholar 

  32. Agarwal, G.S., Kapale, K.T.: Subwavelength atom localization via coherent population trapping. J. Phys. B: At. Mol. Opt. Phys. 39, 3437–3446 (2006)

    Article  ADS  Google Scholar 

  33. Liu, C., Gong, S.Q., Cheng, D., Fan, X., Xu, Z.: Atom localization via interference of dark resonances. Phys. Rev. A 73, 025801 (2006)

    Article  ADS  Google Scholar 

  34. Cheng, D.-C., Niu, Y.-P., Li, R.-X., Gong, S.Q.: Controllable atom localization via double-dark resonances in a tripod system. J. Opt. Soc. Am. B 23, 2180–2184 (2006)

    Article  ADS  Google Scholar 

  35. Liu, C., Gong, S.Q., Nakajima, T., Xu, Z.: Phase-sensitive atom localization in a loop \(\Lambda \)-system. J. Mod. Opt. 53, 1791–1802 (2006)

    Article  ADS  MATH  Google Scholar 

  36. Xu, J., Hu, X.-M.: Localization of a two-level atom via the absorption spectrum. Phys. Lett. A 364, 208–213 (2007)

    Article  ADS  Google Scholar 

  37. Jin, L., Sun, H., Niu, Y., Gong, S.Q.: Sub-half-wavelength atom localization via two standing-wave fields. J. Phys. B: At. Mol. Opt. Phys. 41, 085508 (2008)

    Article  ADS  Google Scholar 

  38. Shen, W.B., Hu, X.M., Xu, J.: Sub-half-wavelength atom localization via coherence-controlled resonance fluorescence. J. Phys. B: At. Mol. Opt. Phys. 41, 185502 (2008)

    Article  ADS  Google Scholar 

  39. Qamar, S., Mehmood, A., Qamar, Sh: Subwavelength atom localization via coherent manipulation of the Raman gain process. Phys. Rev. A 79, 033848 (2009)

    Article  ADS  Google Scholar 

  40. Wang, Z., Jiang, J.: Sub-half-wavelength atom localization via probe absorption spectrum in a four-level atomic system. Phys. Lett. A 374, 4853–4858 (2010)

    Article  ADS  Google Scholar 

  41. Ghafoor, F.: Subwavelength atom localization via quantum coherence in a three-level atomic system. Phys. Rev. A 84, 063849 (2011)

    Article  ADS  Google Scholar 

  42. Dutta, B.K., Panchadhyayee, P., Mahapatra, P.K.: Precise localization of a two-level atom by the superposition of two standing-wave fields. J. Opt. Soc. Am. B 29, 3299–3306 (2012)

    Article  ADS  Google Scholar 

  43. Dutta, B.K., Panchadhyayee, P., Mahapatra, P.K.: Coherent control of localization of a three-level atom by symmetric and asymmetric superpositions of two standing-wave fields. Laser Phys. 23, 045201 (2013)

    Article  ADS  Google Scholar 

  44. Rahmatullah, Qamar, S.: Precision in single atom localization via Raman-driven coherence-Role of detuning and phase shift. Phys. Lett. A 377(25), 1587–1592 (2013)

    Article  ADS  MATH  Google Scholar 

  45. Jin, L., Sun, H., Niu, Y., Jin, S., Gong, S.Q.: Two-dimension atom nano-lithograph via atom localization. J. Mod. Opt. 56, 805–810 (2009)

    Article  ADS  Google Scholar 

  46. Ivanov, V., Rozhdestvensky, Y.: Two-dimensional atom localization in a four-level tripod system in laser field. Phys. Rev. A 81, 033809 (2010)

    Article  ADS  Google Scholar 

  47. Ding, C., Li, J.H., Yang, X., Zhan, Z., Liu, J.-B.: Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system. J. Phys. B: At. Mol. Opt. Phys. 44, 145501 (2011)

    Article  ADS  Google Scholar 

  48. Ding, C., Li, J.H., Zhan, Z., Yang, X.: Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A 83, 063834 (2011)

    Article  ADS  Google Scholar 

  49. Wan, R.-G., Kou, J., Jiang, L., Gao, J.-Y.: Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system. J. Opt. Soc. Am. B 28, 10–17 (2011)

    Article  ADS  Google Scholar 

  50. Wan, R.-G., Kou, J., Jiang, L., Gao, J.-Y.: Two-dimensional atom localization via quantum interference in a coherently driven inverted-Y system. Opt. Commun. 284, 985–990 (2011)

    Article  ADS  Google Scholar 

  51. Wan, R.G., Kou, J., Jiang, L., Jiang, Y., Gao, J.Y.: Two-dimensional atom localization via interacting double-dark resonances. J. Opt. Soc. Am. B 28, 622–628 (2011)

    Article  ADS  Google Scholar 

  52. Li, J.H., Yu, R., Liu, M., Ding, C., Yang, X.: Efficient two-dimensional atom localization via phase-sensitive absorption spectrum in a radio-frequency-driven four-level atomic system. Phys. Lett. A 375, 3978–3985 (2011)

    Article  ADS  Google Scholar 

  53. Zhang, H.T., Wang, H., Wang, Z.: Two-dimensional atom localization via two standing-wave fields in a four-level atomic system. Phys. Scr. 84, 065402 (2011)

    Article  ADS  Google Scholar 

  54. Wan, R.-G., Zhang, T.-Y.: Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission. Opt. Express 19, 25823–25832 (2011)

    Article  ADS  Google Scholar 

  55. Ding, C., Li, J.H., Yu, R., Hao, X., Wu, Y.: High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system. Opt. Express 20, 7870–7885 (2012)

    Article  ADS  Google Scholar 

  56. Wang, Z., Yu, B., Zhu, J., Cao, Z., Zhen, S., Wu, X., Xu, F.: Atom localization via controlled spontaneous emission in a five-level atomic system. Ann. Phys. 327, 1132–1145 (2012)

    Article  ADS  MATH  Google Scholar 

  57. Rahmatullah, Qamar, S.: Two-dimensional atom localization via probe-absorption spectrum. Phys. Rev. A. 88(1), 013846 (2013)

    Article  ADS  Google Scholar 

  58. Wu, J.C., Ai, B.Q.: Two-dimensional sub-wavelength atom localization in an electromagnetically induced transparency atomic system. Eur. Phys. Lett. 107, 14002 (2014)

    Article  ADS  Google Scholar 

  59. Shui, T., Wang, Z., Cao, Z., Yu, B.: Two-dimensional sub-half-wavelength atom localization via AutlerTownes microscopy. Laser Phys. 24, 055202 (2014)

    Article  ADS  Google Scholar 

  60. Wahab, A., Rahmatullah, Qamar, S.: Resonance fluorescence based two- and three- dimensional atom localization. J. Mod. Opt. 63(11), 1059–1067 (2016)

    Article  ADS  Google Scholar 

  61. Gordeev, M.Y., Efremova, E.A., Rozhdestvensky, Y.V.: Atom localization with double-cascade configuration. J. Phys. B: At. Mol. Opt. Phys. 49, 065001 (2016)

    Article  ADS  Google Scholar 

  62. Hua, S., Jiang, X.: Two-dimensional localization of an atom with sub-half-wavelength spatial resolution via coherently controlled spontaneous emission. Eur. Phys. Lett. 116, 53001 (2017)

    Article  ADS  Google Scholar 

  63. Zhu, Z., Yang, W.-X., Chen, A.-X., Liu, S., Lee, R.-K.: Two-dimensional atom localization via phase-sensitive absorption-gain spectra in five-level hyper inverted-Y atomic systems. J. Opt. Soc. Am. B 32, 1070–1077 (2015)

    Article  ADS  Google Scholar 

  64. Raheli, A., Sahrai, M., Hamedi, H.R.: Atom position measurement in a four-level Lambda-shaped scheme with twofold lower-levels. Opt. Quantum Electron. 47, 3221–3236 (2015)

    Article  Google Scholar 

  65. Ivanov, V.S., Rozhdestvensky, Y.V., Suominen, K.A.: Three-dimensional atom localization by laser fields in a four-level tripod system. Phys. Rev. A 90, 063802 (2014)

    Article  ADS  Google Scholar 

  66. Wang, Z., Yu, B.: Precision localization of single atom via spontaneous emission in three dimensions. Quant. Inf. Process. 14, 4067–4076 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Wang, Z., Cao, D., Yu, B.: Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system. Appl. Opt. 55, 3582–3588 (2016)

    Article  ADS  Google Scholar 

  68. Hamedi, H.R., Mehmannavaz, M.R.: Phase control of three-dimensional atom localization in a four-level atomic system in Lambda configuration. J. Opt. Soc. Am. B 33, 41–45 (2016)

    Article  ADS  Google Scholar 

  69. Zhu, Z., Chen, A.-X., Liu, S., Yang, W.-X.: High-precision three-dimensional atom localization via three-wave mixing in V-type three-level atoms. Phys. Lett. A 33, 3956–3961 (2016)

    Article  ADS  Google Scholar 

  70. Elnabi, S.A., Osman, K.I.: Atom localization in a Doppler broadened medium via two standing-wave fields. Opt. Commun. 359, 1–8 (2016)

    Article  ADS  Google Scholar 

  71. Wang, Z., Yu, B.: Efficient three-dimensional atom localization via probe absorption. J. Opt. Soc. Am. B 32, 1281–1286 (2015)

    Article  ADS  Google Scholar 

  72. Wang, Z., Yu, B.: High-precision three-dimensional atom localization via spontaneous emission in a four-level atomic system. Laser Phys. Lett. 13, 065203 (2016)

    Article  ADS  Google Scholar 

  73. Zhu, Z., Yang, W.X., Xie, X.T., Liu, X.S., Liu, S., Lee, R.K.: Three-dimensional atom localization from spatial interference in a double two-level atomic system. Phys. Rev. A 94(1), 013826 (2016)

    Article  ADS  Google Scholar 

  74. Zhu, Z., Yang, W.X., Chen, A.X., Liu, S., Lee, R.K.: Dressed-state analysis of efficient three-dimensional atom localization in a ladder-type three-level atomic system. Laser Phys. 26, 075203 (2016)

    Article  ADS  Google Scholar 

  75. Yang, L., Cao, D., Wang, Y., Wang, Z., Yu, B.: Three-dimensional sub-half-wavelength atom localization via interacting double-dark resonances. Laser Phys. 26(11), 115501 (2016)

    Article  ADS  Google Scholar 

  76. Wang, Z., Song, F., Chen, J., Yu, B.: Coherent control of three-dimensional atom localization based on different coupled mechanisms. Quantum Inf. Process 16, 129 (2017)

    Article  ADS  MATH  Google Scholar 

  77. Mao, Y., Wu, J.: High-precision three-dimensional atom localization in a microwave-driven atomic system. J. Opt. Soc. Am. B 34, 1070 (2017)

    Article  ADS  Google Scholar 

  78. Westbrook, C.I., Jurczak, C., Birkl, G., Desruelle, B., Phillips, W.D., Aspect, A.: A study of atom localization in an optical lattice by analysis of the scattered light. J. Mod. Opt. 44, 1837–1851 (1997)

    Article  ADS  Google Scholar 

  79. Mollow, B.R.: Stimulated emission and absorption near resonance for driven systems. Phys. Rev. A 5, 2217–2222 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof Y. Wu for his valuable comments on the manuscript. BKD likes to acknowledge the tenure of his service in J. K. College, Purulia (W.B.), where he felt motivated to do research in this direction. He also gratefully acknowledges the financial support provided by the R & D section of Sree Chaitanya College (Grant No.: SCC/DJRG/SC-07. Dt. 16.05.2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Panchadhyayee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchadhyayee, P., Dutta, B.K., Das, N. et al. Resonance fluorescence microscopy via three-dimensional atom localization. Quantum Inf Process 17, 20 (2018). https://doi.org/10.1007/s11128-017-1787-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1787-4

Keywords

Navigation