Ion trap architectures and new directions

Part of the following topical collections:
  1. Trapped Ion Quantum Information Processing


Trapped ion technology has seen advances in performance, robustness and versatility over the last decade. With increasing numbers of trapped ion groups worldwide, a myriad of trap architectures are currently in use. Applications of trapped ions include: quantum simulation, computing and networking, time standards and fundamental studies in quantum dynamics. Design of such traps is driven by these various research aims, but some universally desirable properties have lead to the development of ion trap foundries. Additionally, the excellent control achievable with trapped ions and the ability to do photonic readout has allowed progress on quantum networking using entanglement between remotely situated ion-based nodes. Here, we present a selection of trap architectures currently in use by the community and present their most salient characteristics, identifying features particularly suited for quantum networking. We also discuss our own in-house research efforts aimed at long-distance trapped ion networking.


Trapped ion Microfabricated ion traps Quantum computing Quantum networking Quantum frequency conversion Superconducting nanowire single-photon detectors 



We thank Ken Wright and Paul Hess for a thorough reading of the manuscript and Vikas Anant for the modeling of the SNSPD. Funding provided by the Army Research Lab, Cooperative Agreement and the Center for Distributed Quantum Information. All images preprinted from publications have been licensed for use and additionally permission requested from an author to reproduce the image. The US Government neither endorses nor guarantees in any way organizations, companies or products included in this article, and such mention is only given for illustrative purposes; other competing options may be equal or better than those mentioned here.


  1. 1.
    Paul, W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    Dehmelt, H.G.: Radiofrequency spectroscopy of stored ions I: storage. Adv. At. Mol. Phys. 3, 53 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    Bollinger, J.J., Heizen, D.J., Itano, W.M., Gilbert, S.L., Wineland, D.J.: A 303-MHz frequency standard based on trapped \(\text{ Be }^+\) ions. IEEE Trans. Instrum. Meas. 40(2), 126–128 (1991)CrossRefGoogle Scholar
  4. 4.
    Fisk, P.T.H., Sellars, M.J., Lawn, M.A., Coles, C.: Accurate measurement of the 12.6 GHz “clock” transition in trapped \(^{171}\text{ Yb }^+\) ions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(2), 344–354 (1997)CrossRefGoogle Scholar
  5. 5.
    Rosenband, T., Hume, D.B., Schmidt, P.O., Chou, C.W., Brusch, A., Lorini, L., Oskay, W.H., Drullinger, R.E., Fortier, T.M., Stalnaker, J.E., Diddams, S.A., Swann, W.C., Newbury, N.R., Itano, W.M., Wineland, D.J., Bergquist, J.C.: Frequency ratio of al\(^{+}\) and hg\(^{+}\) single-ion optical clocks; metrology at the 17th decimal place. Science 319(5871), 1808–1812 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Huntemann, N., Sanner, C., Lipphardt, B., Tamm, C., Peik, E.: Single-ion atomic clock with \(3\times {10}^{-18}\) systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Keller, J., Burgermeister, T., Kalincev, D., Kiethe, J., Mehlstäubler, T.E.: Evaluation of trap-induced systematic frequency shifts for a multi-ion optical clock at the \(10^{-19}\) level. J. Phys. Conf. Ser. 723(1), 012027 (2016)CrossRefGoogle Scholar
  8. 8.
    Chou, C.W., Hume, D.B., Rosenband, T., Wineland, D.J.: Optical clocks and relativity. Science 329(5999), 1630–1633 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Schwartz, J.C., Senko, M.W., Syka, J.E.P.: A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13(6), 659–669 (2002)CrossRefGoogle Scholar
  10. 10.
    Keller, M., Lange, B., Hayasaka, K., Lange, W., Walther, H.: Deterministic cavity quantum electrodynamics with trapped ions. J. Phys. B At. Mol. Opt. Phys. 36(3), 613 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Kreuter, A., Becher, C., Lancaster, G.P.T., Mundt, A.B., Russo, C., Häffner, H., Roos, C., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Spontaneous emission lifetime of a single trapped \({\text{ Ca }}^{+}\) ion in a high finesse cavity. Phys. Rev. Lett. 92, 203002 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Barros, H.G., Stute, A., Northup, T.E., Russo, C., Schmidt, P.O., Blatt, R.: Deterministic single-photon source from a single ion. New J. Phys. 11(10), 103004 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Takahashi, H., Wilson, A., Riley-Watson, A., Oruc̆ević, F., Seymour-Smith, N., Keller, M., Lange, W.: An integrated fiber trap for single-ion photonics. New J. Phys. 15(5), 053011 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Odom, B., Hanneke, D., D’Urso, B., Gabrielse, G.: New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97, 030801 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Porras, D., Cirac, J.I.: Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Porras, D., Cirac, J.I.: Quantum manipulation of trapped ions in two dimensional coulomb crystals. Phys. Rev. Lett. 96, 250501 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Islam, R., Senko, C., Campbell, W.C., Korenblit, S., Smith, J., Lee, A., Edwards, E.E., Wang, C.-C.J., Freericks, J.K., Monroe, C.: Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340(6132), 583–587 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Schindler, P., Muller, M., Nigg, D., Barreiro, J.T., Martinez, E.A., Hennrich, M., Monz, T., Diehl, S., Zoller, P., Blatt, R.: Quantum simulation of dynamical maps with trapped ions. Nat. Phys. 9(6), 361–367 (2013). ArticleCrossRefGoogle Scholar
  19. 19.
    Zhang, J., Hess, P.W., Kyprianidis, A., Becker, P., Lee, A., Smith, J., Pagano, G., Potirniche, I.-D., Potter, A.C., Vishwanath, A., Yao, N.Y., Monroe, C.: Observation of a discrete time crystal. Nature 543(7644), 217–220 (2017). LetterADSCrossRefGoogle Scholar
  20. 20.
    Neyenhuis, B., Smith, J., Lee, A.C., Zhang, J., Richerme, P., Hess, P.W., Gong, Z.-X., Gorshkov, A.V., Monroe, C.: Observation of prethermalization in long-range interacting spin chains. arXiv:1608.00681 (2016)
  21. 21.
    Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    Milburn, G.J., Schneider, S., James, D.F.V.: Ion trap quantum computing with warm ions. Fortschr. Phys. 48(9–11), 801–810 (2000)CrossRefGoogle Scholar
  23. 23.
    Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Duan, L.-M.: Scaling ion trap quantum computation through fast quantum gates. Phys. Rev. Lett. 93, 100502 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Nat. Inst. Stand. Technol. 103, 259 (1998)MATHCrossRefGoogle Scholar
  26. 26.
    Debnath, S., Linke, N.M., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Demonstration of a small programmable quantum computer with atomic qubits. Nature 536(7614), 63–66 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.-M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Olmschenk, S., Younge, K.C., Moehring, D.L., Matsukevich, D.N., Maunz, P., Monroe, C.: Manipulation and detection of a trapped \({\text{ Yb }}^{+}\) hyperfine qubit. Phys. Rev. A 76, 052314 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Madsen, M.J., Moehring, D.L., Maunz, P., Kohn, R.N., Duan, L.-M., Monroe, C.: Ultrafast coherent excitation of a trapped ion qubit for fast gates and photon frequency qubits. Phys. Rev. Lett. 97, 040505 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Mølmer, K., Sørensen, A.: Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature 453(7198), 1008–1015 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Eschner, J., Morigi, G., Schmidt-Kaler, F., Blatt, R.: Laser cooling of trapped ions. J. Opt. Soc. Am. B 20(5), 1003–1015 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Mintert, F., Wunderlich, C.: Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87, 257904 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    Lake, K., Weidt, S., Randall, J., Standing, E.D., Webster, S.C., Hensinger, W.K.: Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation. Phys. Rev. A 91, 012319 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Hasegawa, T., Bollinger, J.J.: Rotating radio frequency traps. Phys. Rev. A 72, 043403 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Duan, L.-M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    Gaebler, J.P., Tan, T.R., Lin, Y., Wan, Y., Bowler, R., Keith, A.C., Glancy, S., Coakley, K., Knill, E., Leibfried, D., Wineland, D.J.: High-fidelity universal gate set for \(^{9}{\text{ Be }}^{+}\) ion qubits. Phys. Rev. Lett. 117, 060505 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Ballance, C.J., Harty, T.P., Linke, N.M., Sepiol, M.A., Lucas, D.M.: High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    Moehring, D.L., Highstrete, C., Stick, D., Fortier, K.M., Haltli, R., Tigges, C., Blain, M.G.: Design, fabrication and experimental demonstration of junction surface ion traps. New J. Phys. 13(7), 075018 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417(6890), 709–711 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Hensinger, W.K., Olmschenk, S., Stick, D., Hucul, D., Yeo, M., Acton, M., Deslauriers, L., Monroe, C., Rabchuk, J.: T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88(3), 034101 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Schug, M., Huwer, J., Kurz, C., Müller, P., Eschner, J.: Heralded photonic interaction between distant single ions. Phys. Rev. Lett. 110, 213603 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Kurz, C., Schug, M., Eich, P., Huwer, J., Müller, P., Eschner, J.: Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer. Nat. Commun. 5, 5527 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    Wootters, W.H., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)ADSMATHCrossRefGoogle Scholar
  47. 47.
    Cabrillo, C., Cirac, J.I., García-Fernández, P., Zoller, P.: Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    Hucul, D., Inlek, I.V., Crocker, C., Debnath, S., Clark, S.M., Monroe, C.: Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015)CrossRefGoogle Scholar
  49. 49.
    Streed, E.W., Norton, B.G., Chapman, J.J., Kielpinski, D.: Scalable efficient ion-photon coupling with phase fresnel lenses for large-scale quantum computing. Quant. Inf. Comput. 9, 0203 (2009)Google Scholar
  50. 50.
    Siverns, J.D., Li, X., Quraishi, Q.: Ion-photon entanglement and quantum frequency conversion with trapped \({\text{ Ba }}^+\) ions. Appl. Phys. Lett. 56, B222 (2017)Google Scholar
  51. 51.
    Hughes, M.D., Lekitsch, B., Broersma, J.A., Hensinger, W.K.: Microfabricated ion traps. Contemp. Phys. 52, 505–529 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Turchette, Q.A., Kielpinski, D., King, B.E., Leibfried, D., Meekhof, D.M., Myatt, C.J., Rowe, M.A., Sackett, C.A., Wood, C.S., Itano, W.M., Monroe, C., Wineland, D.J., Wineland, D.J.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    Deslauriers, L., Olmschenk, S., Stick, D., Hensinger, W.K., Sterk, J., Monroe, C.: Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    Hite, D.A., Colombe, Y., Wilson, A.C., Allcock, D.T.C., Leibfried, D., Wineland, D.J., Pappas, D.P.: Surface science for improved ion traps. MRS Bull. 38(10), 826–833 (2013)CrossRefGoogle Scholar
  55. 55.
    McConnell, R., Bruzewicz, C., Chiaverini, J., Sage, J.: Reduction of trapped-ion anomalous heating by in situ surface plasma cleaning. Phys. Rev. A 92, 020302 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    Allcock, D.T.C., Harty, T.P., Janacek, H.A., Linke, N.M., Ballance, C.J., Steane, A.M., Lucas, D.M., Jarecki, R.L., Habermehl, S.D., Blain, M.G., Stick, D., Moehring, D.L.: Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap. Appl. Phys. B 107(4), 913–919 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323(5913), 486–489 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Excelitas Technologies. SPCM-NIR Rev 2015-03. (2015)
  59. 59.
    Gaudio, R., Renema, J.J., Zhou, Z., Verma, V.B., Lita, A.E., Shainline, J., Stevens, M.J., Mirin, R.P., Nam, S.W., van Exter, M.P., de Dood, M.J.A., Fiore, A.: Experimental investigation of the detection mechanism in wsi nanowire superconducting single photon detectors. Appl. Phys. Lett. 109(3), 031101 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    Lamas-Linares, A., Calkins, B., Tomlin, N.A., Gerrits, T., Lita, A.E., Beyer, J., Mirin, R.P., Woo Nam, S.: Nanosecond-scale timing jitter for single photon detection in transition edge sensors. Appl. Phys. Lett. 102(23), 231117 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    Marsili, F., Verma, V.B., Stern, J.A., Harrington, S., Lita, A.E., Gerrits, T., Vayshenker, I., Baek, B., Shaw, M.D., Mirin, R.P., Nam, S.W.: Detecting single infrared photons with 93. Nat. Photonics 7(3), 210–214 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    Rath, P., Kahl, O., Ferrari, S., Sproll, F., Lewes-Malandrakis, G., Brink, D., Ilin, K., Siegel, M., Nebel, C., Pernice, W.: Superconducting single-photon detectors integrated with diamond nanophotonic circuits. Light Sci. Appl. 4, e338 (2015). Original ArticleCrossRefGoogle Scholar
  63. 63.
    Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. Photonics 3(12), 696–705 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    Yamashita, T., Miki, S., Makise, K., Qiu, W., Terai, H., Fujiwara, M., Sasaki, M., Wang, Z.: Origin of intrinsic dark count in superconducting nanowire single-photon detectors. Appl. Phys. Lett. 99(16), 161105 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    Vikas, A.: Photon spot inc. (2016). Accessed 2017
  66. 66.
    Slichter, D.H., Verma, V.B., Liebfried, D., Mirin, R.P., Nam, S.W., Wineland, D.J.: UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. arXiv:1611.09949 (2016)
  67. 67.
    Kumar, P.: Quantum frequency conversion. Opt. Lett. 15(24), 1476–1478 (1990)ADSCrossRefGoogle Scholar
  68. 68.
    Lenhard, A., Brito, J., Bock, M., Becher, C., Eschner, J.: Coherence and entanglement preservation of frequency-converted heralded single photons. Opt. Express 25(10), 11187–11199 (2017)ADSCrossRefGoogle Scholar
  69. 69.
    Esfandyarpour, V., Langrock, C., Fejer1, M.M.: Cascaded downconversion interface to the telecom band for single-photon-level signals at 650 nm. In: Conference on Lasers and Electro-Optics (2016)Google Scholar
  70. 70.
    Siverns, J.D., Li, X., Quraishi, Q.: Ion-photon entanglement and quantum frequency conversion with trapped \({Ba}^{+}\) ions. Appl. Opt. 56, B222-B230 (2017)Google Scholar
  71. 71.
    Zaske, S., Lenhard, A., Keßler, C.A., Kettler, J., Hepp, C., Arend, C., Albrecht, R., Schulz, W.-M., Jetter, M., Michler, P., Becher, C.: Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    Madsen, M.J., Hensinger, W.K., Stick, D., Rabchuk, J.A., Monroe, C.: Planar ion trap geometry for microfabrication. Appl. Phys. B 78(5), 639–651 (2004)ADSCrossRefGoogle Scholar
  73. 73.
    Ghosh, P.K.: Ion Traps. International Series of Monographs on Physics. Clarendon Press, Oxford (1995)Google Scholar
  74. 74.
    Berkeland, D.J., Miller, J.D., Bergquist, J.C., Itano, W.M., Wineland, D.J.: Minimization of ion micromotion in a paul trap. J. Appl. Phys. 83(10), 5025–5033 (1998)ADSCrossRefGoogle Scholar
  75. 75.
    Drewsen, M., Brodersen, C., Hornekær, L., Hangst, J.S., Schifffer, J.P.: Large ion crystals in a linear paul trap. Phys. Rev. Lett. 81, 2878–2881 (1998)ADSCrossRefGoogle Scholar
  76. 76.
    Vittorini, G., Hucul, D., Inlek, I.V., Crocker, C., Monroe, C.: Entanglement of distinguishable quantum memories. Phys. Rev. A 90, 040302 (2014)ADSCrossRefGoogle Scholar
  77. 77.
    Clark, C.R., Chou, C., Ellis, A.R., Hunker, J., Kemme, S.A., Maunz, P., Tabakov, B., Tigges, C., Stick, D.L.: Characterization of fluorescence collection optics integrated with a microfabricated surface electrode ion trap. Phys. Rev. Appl. 1, 024004 (2014)ADSCrossRefGoogle Scholar
  78. 78.
    Tabakov, B., Benito, F., Blain, M., Clark, C.R., Clark, S., Haltli, R.A., Maunz, P., Sterk, J.D., Tigges, C., Stick, D.: Assembling a ring-shaped crystal in a microfabricated surface ion trap. Phys. Rev. Appl. 4, 031001 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    Doret, S.C., Amini, J.M., Wright, K., Volin, C., Killian, T., Ozakin, A., Denison, D., Hayden, H., Pai, C.-S., Slusher, R.E., Harter, A.W.: Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation. New J. Phys. 14(7), 073012 (2012)ADSCrossRefGoogle Scholar
  80. 80.
    Shu, G., Vittorini, G., Buikema, A., Nichols, C.S., Volin, C., Stick, D., Brown, K.R.: Heating rates and ion-motion control in a Y-junction surface-electrode trap. Phys. Rev. A 89, 062308 (2014)ADSCrossRefGoogle Scholar
  81. 81.
    Herold, C.D., Fallek, S.D., Merrill, J.T., Meier, A.M., Brown, K.R., Volin, C.E., Amini, J.M.: Universal control of ion qubits in a scalable microfabricated planar trap. New J. Phys. 18(2), 023048 (2016)ADSCrossRefGoogle Scholar
  82. 82.
    Antohi, P.B., Schuster, D., Akselrod, G.M., Labaziewicz, J., Ge, Y., Lin, Z., Bakr, W.S., Chuang, I.L.: Cryogenic ion trapping systems with surface-electrode traps. Rev. Sci. Instrum. 80(1), 013103 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    Vittorini, G., Wright, K., Brown, K.R., Harter, A.W., Doret, S.Charles: Modular cryostat for ion trapping with surface-electrode ion traps. Rev. Sci. Instrum. 84(4), 043112 (2013)ADSCrossRefGoogle Scholar
  84. 84.
    Labaziewicz, J., Ge, Y., Antohi, P., Leibrandt, D., Brown, K.R., Chuang, I.L.: Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100, 013001 (2008)ADSCrossRefGoogle Scholar
  85. 85.
    Niedermayr, M., Lakhmanskiy, K., Kumph, M., Partel, S., Edlinger, J., Brownnutt, M., Blatt, R.: Cryogenic surface ion trap based on intrinsic silicon. New J. Phys. 16(11), 113068 (2014)ADSCrossRefGoogle Scholar
  86. 86.
    Furukawa, T., Nishimura, J., Tanaka, U., Urabe, S.: Design and characteristic measurement of miniature three-segment linear paul trap. Jpn. J. Appl. Phys. 44(10R), 7619 (2005)ADSCrossRefGoogle Scholar
  87. 87.
    Bergquist, J.C., Hulet, R.G., Itano, W.M., Wineland, D.J., Wineland, D.J.: Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699–1702 (1986)ADSCrossRefGoogle Scholar
  88. 88.
    Wineland, D.J.: Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013)ADSCrossRefGoogle Scholar
  89. 89.
    Smith, J., Lee, A., Richerme, P., Neyenhuis, B., Hess, P.W., Hauke, P., Heyl, M., Huse, D.A., Monroe, C.: Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12(10), 907–911 (2016). LetterCrossRefGoogle Scholar
  90. 90.
    Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., Hänsel, W., Hennrich, M., Blatt, R.: 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)ADSCrossRefGoogle Scholar
  91. 91.
    Schmidt-Kaler, F., Haffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422(6930), 408–411 (2003)ADSCrossRefGoogle Scholar
  92. 92.
    Monz, T., Kim, K., Hänsel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)ADSCrossRefGoogle Scholar
  93. 93.
    Haffner, H., Hansel, W., Roos, C.F., Benhelm, J., Chek-al kar, D., Chwalla, M., Korber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Guhne, O., Dur, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438(7068), 643–646 (2005)ADSCrossRefGoogle Scholar
  94. 94.
    Schmidt-Kaler, F., Häffner, H., Gulde, S., Riebe, M., Lancaster, G.P.T., Deuschle, T., Becher, C., Hänsel, W., Eschner, J., Roos, C.F., Blatt, R.: How to realize a universal quantum gate with trapped ions. Appl. Phys. B 77(8), 789–796 (2003)ADSCrossRefGoogle Scholar
  95. 95.
    Rowe, M.A., Ben-Kish, A., Demarco, B., Leibfried, D., Meyer, V., Beall, J., Britton, J., Hughes, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Transport of quantum states and separation of ions in a dual rf ion trap. Quantum Inf. Comput. 2(4), 257–271 (2002)MATHGoogle Scholar
  96. 96.
    Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad, R.B., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., Wineland, D.J.: Realization of quantum error correction. Nature 432(7017), 602–605 (2004)ADSMATHCrossRefGoogle Scholar
  97. 97.
    Nizamani, A.H., Hensinger, W.K.: Optimum electrode configurations for fast ion separation in microfabricated surface ion traps. Appl. Phys. B 106(2), 327–338 (2012)ADSCrossRefGoogle Scholar
  98. 98.
    McLoughlin, J.J., Nizamani, A.H., Siverns, J.D., Sterling, R.C., Hughes, M.D., Lekitsch, B., Stein, B., Weidt, S., Hensinger, W.K.: Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements. Phys. Rev. A 83, 013406 (2011)ADSCrossRefGoogle Scholar
  99. 99.
    Korenblit, S., Kafri, D., Campbell, W.C., Islam, R., Edwards, E.E., Gong, Z.-X., Lin, G.-D., Duan, L.-M., Kim, J., Kim, K., Monroe, C.: Quantum simulation of spin models on an arbitrary lattice with trapped ions. New J. Phys. 14(9), 095024 (2012)ADSCrossRefGoogle Scholar
  100. 100.
    Kim, K., Chang, M.-S., Korenblit, S., Islam, R., Edwards, E.E., Freericks, J.K., Lin, G.-D., Duan, L.-M., Monroe, C.: Quantum simulation of frustrated Ising spins with trapped ions. Nature 465(7298), 590–593 (2010)ADSCrossRefGoogle Scholar
  101. 101.
    Edwards, E.E., Korenblit, S., Kim, K., Islam, R., Chang, M.-S., Freericks, J.K., Lin, G.-D., Duan, L.-M., Monroe, C.: Quantum simulation and phase diagram of the transverse-field Ising model with three atomic spins. Phys. Rev. B 82, 060412 (2010)ADSCrossRefGoogle Scholar
  102. 102.
    Islam, R., Edwards, E.E., Kim, K., Korenblit, S., Noh, C., Carmichael, H., Lin, G.-D., Duan, L.-M., Joseph Wang, C.-C., Freericks, J.K., Monroe, C.: Onset of a quantum phase transition with a trapped ion quantum simulator. Nat. Commun. 2, 377 (2011) (EP –, Article) Google Scholar
  103. 103.
    Senko, C., Smith, J., Richerme, P., Lee, A., Campbell, W.C., Monroe, C.: Coherent imaging spectroscopy of a quantum many-body spin system. Science 345(6195), 430–433 (2014)ADSMathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Pyka, K., Herschbach, N., Keller, J., Mehlstäubler, T.E.: A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock. Appl. Phys. B 114(1), 231–241 (2014)ADSCrossRefGoogle Scholar
  105. 105.
    Deslauriers, L., Haljan, P.C., Lee, P.J., Brickman, K.-A., Blinov, B.B., Madsen, M.J., Monroe, C.: Zero-point cooling and low heating of trapped \(^{111}\)Cd\(^{+}\) ions. Phys. Rev. A 70, 043408 (2004)ADSCrossRefGoogle Scholar
  106. 106.
    Weidt, S., Randall, J., Webster, S.C., Standing, E.D., Rodriguez, A., Webb, A.E., Lekitsch, B., Hensinger, W.K.: Ground-state cooling of a trapped ion using long-wavelength radiation. Phys. Rev. Lett. 115, 013002 (2015)ADSCrossRefGoogle Scholar
  107. 107.
    Weidt, S., Randall, J., Webster, S.C., Lake, K., Webb, A.E., Cohen, I., Navickas, T., Lekitsch, B., Retzker, A., Hensinger, W.K.: Trapped-ion quantum logic with global radiation fields. Phys. Rev. Lett. 117, 220501 (2016)ADSCrossRefGoogle Scholar
  108. 108.
    Brandstätter, B., McClung, A., Schüppert, K., Casabone, B., Friebe, K., Stute, A., Schmidt, P.O., Deutsch, C., Reichel, J., Blatt, R., Northup, T.E.: Integrated fiber-mirror ion trap for strong ion-cavity coupling. Rev. Sci. Instrum. 84(12), 123104 (2013)ADSCrossRefGoogle Scholar
  109. 109.
    Streed, E.W., Norton, B.G., Jechow, A., Weinhold, T.J., Kielpinski, D.: Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106, 010502 (2011)ADSCrossRefGoogle Scholar
  110. 110.
    Casabone, B., Friebe, K., Brandstätter, B., Schüppert, K., Blatt, R., Northup, T.E.: Enhanced quantum interface with collective ion-cavity coupling. Phys. Rev. Lett. 114, 023602 (2015)ADSCrossRefGoogle Scholar
  111. 111.
    Vogell, B., Vermersch, B., Northup, T.E., Lanyon, B.P., Muschik, C.A.: Deterministic quantum state transfer between remote qubits in cavities. arXiv:1704.06233v2 (2017)
  112. 112.
    Sterk, J.D., Luo, L., Manning, T.A., Maunz, P., Monroe, C.: Photon collection from a trapped ion-cavity system. Phys. Rev. A 85, 062308 (2012)ADSCrossRefGoogle Scholar
  113. 113.
    Steiner, M., Meyer, H.M., Deutsch, C., Reichel, J., Köhl, M.: Single ion coupled to an optical fiber cavity. Phys. Rev. Lett. 110, 043003 (2013)ADSCrossRefGoogle Scholar
  114. 114.
    Takahashi, H., Kassa, E., Christoforou, C., Keller, M.: Cavity-induced anti-correlated photon emission rates of a single ion. Phys. Rev. A 96, 023824 (2017)ADSCrossRefGoogle Scholar
  115. 115.
    Meyer, H.M., Stockill, R., Steiner, M., Le Gall, C., Matthiesen, C., Clarke, E., Ludwig, A., Reichel, J., Atatüre, M., Köhl, M.: Direct photonic coupling of a semiconductor quantum dot and a trapped ion. Phys. Rev. Lett. 114, 123001 (2015)ADSCrossRefGoogle Scholar
  116. 116.
    Wright, J., Auchter, C., Chou, C.-K., Graham, R.D., Noel, T.W., Sakrejda, T., Zhou, Z., Blinov, B.B.: Toward a scalable quantum computing architecture with mixed species ion chains. Quantum Inf. Process. 15, 1–11 (2016)MathSciNetCrossRefGoogle Scholar
  117. 117.
    Begley, S., Vogt, M., Gulati, G.K., Takahashi, H., Keller, M.: Optimized multi-ion cavity coupling. Phys. Rev. Lett. 116, 223001 (2016)ADSCrossRefGoogle Scholar
  118. 118.
    Fogarty, T., Cormick, C., Landa, H., Stojanović, V.M., Demler, E., Morigi, G., Morigi, G.: Nanofriction in cavity quantum electrodynamics. Phys. Rev. Lett. 115, 233602 (2015)ADSCrossRefGoogle Scholar
  119. 119.
    Shu, G., Chou, C.-K., Kurz, N., Dietrich, M.R., Blinov, B.B.: Efficient fluorescence collection and ion imaging with the “tack” ion trap. J. Opt. Soc. Am. B 28(12), 2865–2870 (2011)ADSCrossRefGoogle Scholar
  120. 120.
    Maiwald, R., Golla, A., Fischer, M., Bader, M., Heugel, S., Chalopin, B., Sondermann, M., Leuchs, G.: Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A 86, 043431 (2012)ADSCrossRefGoogle Scholar
  121. 121.
    Kumph, M., Holz, P., Langer, K., Meraner, M., Niedermayr, M., Brownnutt, M., Blatt, R.: Operation of a planar-electrode ion-trap array with adjustable rf electrodes. New J. Phys. 18(2), 023047 (2016)ADSCrossRefGoogle Scholar
  122. 122.
    Siverns, J.D., Seb, W., Lake, K., Lekitsch, B., Hughes, M.D., Hensinger, W.K.: Optimization of two-dimensional ion trap arrays for quantum simulation. New J. Phys. 14(8), 085009 (2012)ADSCrossRefGoogle Scholar
  123. 123.
    Sterling, R.C., Rattanasonti, H., Weidt, S., Lake, K., Srinivasan, P., Webster, S.C., Kraft, M., Hensinger, W.K.: Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip. Nat. Commun. 5, 3637 (2014) (EP –, Article) Google Scholar
  124. 124.
    Lindenfelser, F., Keitch, B., Kienzler, D., Bykov, D., Uebel, P., Schmidt, M.A., Russell, PStJ, Home, J.P.: An ion trap built with photonic crystal fibre technology. Rev. Sci. Instrum. 86(3), 033107 (2015)ADSCrossRefGoogle Scholar
  125. 125.
    Stick, D., Hensinger, W.K., Olmschenk, S., Madsen, M.J., Schwab, K., Monroe, C.: Ion trap in a semiconductor chip. Nat. Phys. 2, 36–39 (2006)CrossRefGoogle Scholar
  126. 126.
    Wright, K., Amini, J.M., Faircloth, D.L., Volin, C., Doret, S.C., Hayden, H., Pai, C.-S., Landgren, D.W., Denison, D., Killian, T., Slusher, R.E., Harter, A.W.: Reliable transport through a microfabricated X-junction surface-electrode ion trap. New J. Phys. 15(3), 033004 (2013)ADSCrossRefGoogle Scholar
  127. 127.
    Ospelkaus, C., Warring, U., Colombe, Y., Brown, K.R., Amini, J.M., Leibfried, D., Wineland, D.J.: Microwave quantum logic gates for trapped ions. Nature 476(7359), 181–184 (2011)ADSCrossRefGoogle Scholar
  128. 128.
    Shappert, C.M., Merrill, J.T., Brown, K.R., Amini, J.M., Volin, C., Doret, S.C., Hayden, H., Pai, C.-S., Brown, K.R., Harter, A.W.: Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation. New J. Phys. 15(8), 083053 (2013)ADSCrossRefGoogle Scholar
  129. 129.
    Merrill, J.T., Volin, C., Landgren, D., Amini, J.M., Wright, K., Doret, S.C., Pai, C.-S., Hayden, H., Killian, T., Faircloth, D., Brown, K.R., Harter, A.W., Slusher, R.E.: Demonstration of integrated microscale optics in surface-electrode ion traps. New J. Phys. 13(10), 103005 (2011)CrossRefGoogle Scholar
  130. 130.
    Wesenberg, J.H.: Electrostatics of surface-electrode ion traps. Phys. Rev. A 78, 063410 (2008)ADSCrossRefGoogle Scholar
  131. 131.
    Mehta, K.K., Bruzewicz, C.D., McConnell, R., Ram, R.J., Sage, J.M., Chiaverini, J.: Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11(12), 1066–1070 (2016)ADSGoogle Scholar
  132. 132.
    Kunert, P.J., Georgen, D., Bogunia, L., Baig, M.T., Baggash, M.A., Johanning, M., Wunderlich, C.: A planar ion trap chip with integrated structures for an adjustable magnetic field gradient. Appl. Phys. B 114(1–2), 27–36 (2014)ADSCrossRefGoogle Scholar
  133. 133.
    Arrington, C.L., McKay, K.S., Baca, E.D., Coleman, J.J., Colombe, Y., Finnegan, P., Hite, D.A., Hollowell, A.E., Jördens, R., Jost, J.D., Leibfried, D., Rowen, A.M., Warring, U., Weides, M., Wilson, A.C., Wineland, D.J., Pappas, D.P.: Micro-fabricated stylus ion trap. Rev. Sci. Instrum. 84(8), 085001 (2013)ADSCrossRefGoogle Scholar
  134. 134.
    Bloch, Immanuel: Ultracold quantum gases in optical lattices. Nat. Phys. 1(1), 23–30 (2005)MathSciNetCrossRefGoogle Scholar
  135. 135.
    Guise, N.D., Fallek, S.D., Stevens, K.E., Brown, K.R., Volin, C., Harter, A.W., Amini, J.M., Higashi, R.E., Lu, S.T., Chanhvongsak, H.M., Nguyen, T.A., Marcus, M.S., Ohnstein, T.R., Youngner, D.W.: Ball-grid array architecture for microfabricated ion traps. J. Appl. Phys. 117(17), 174901 (2015)ADSCrossRefGoogle Scholar
  136. 136.
    Guise, N.D., Fallek, S.D., Hayden, H., Pai, C.-S., Volin, C., Brown, K.R., Merrill, J.T., Harter, A.W., Amini, J.M., Lust, L.M., Muldoon, K., Carlson, D., Budach, J.: In-vacuum active electronics for microfabricated ion traps. Rev. Sci. Instrum. 85(6):063101 (2014)Google Scholar
  137. 137.
    Ken Wright. Private communicationGoogle Scholar
  138. 138.
    Maunz, P.: High Optical Access Trap 2.0. Technical Report, Sandia National Laboratories (2016)Google Scholar
  139. 139.
    Maunz, P.: High-fidelity two-qubit quantum gates in a scalable surface ion trap. In: Southwest Quantum Information Technology Workshop, Albuquerque, New Mexico (2016).Google Scholar
  140. 140.
    Martinez, E.A., Muschik, C.A., Schindler, P., Nigg, D., Erhard, A., Heyl, M., Hauke, P., Dalmonte, M., Monz, T., Zoller, P., Blatt, R.: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534(7608), 516–519 (2016). LetterADSCrossRefGoogle Scholar
  141. 141.
    Brandl, M.F., van Mourik, M.W., Postler, L., Nolf, A., Lakhmanskiy, K., Paiva, R.R., Moller, S., Daniilidis, N., Haffner, H., Kaushal, V., Ruster, T., Warschburger, C., Kaufmann, H., Poschinger, U.G., Schmidt-Kaler, F., Schindler, P., Monz, T., Blatt, R.: Cryogenic setup for trapped ion quantum computing. Rev. Sci. Instrum. 87(11), 113103 (2016)ADSCrossRefGoogle Scholar
  142. 142.
    Ghadimi, M., Blums, V., Norton, B.G., Fisher, P.M., Connell, S.C., Amini, J.M., Volin, C., Hayden, H., Pai, C.-S., Kielpinski, D., Lobino, M., Streed, E.W.: Scalable ion-photon quantum interface based on integrated diffractive mirrors. npj Quantum Inf. 3, 1 (2016)Google Scholar
  143. 143.
    Monroe, C., Kim, J.: Scaling the ion trap quantum processor. Science 339(6124), 1164–1169 (2013)ADSCrossRefGoogle Scholar
  144. 144.
    Matsukevich, D.N., Maunz, P., Moehring, D.L., Olmschenk, S., Monroe, C.: Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008)ADSCrossRefGoogle Scholar
  145. 145.
    Mount, E., Gaultney, D., Vrijsen, G., Adams, M., Baek, S.-Y., Hudek, K., Isabella, L., Crain, S., van Rynbach, A., Maunz, P., Kim, J.: Scalable digital hardware for a trapped ion quantum computer. Quantum Inf. Process. 15, 1–18 (2015)Google Scholar
  146. 146.
    National Institute Standards and Technology (NIST): Real-time infrastructure for quantum physics (ARTIQ). (2016). Accessed 2016
  147. 147.
    Maunz, P.: Sandia National Laboratory Technical Report. (2016)
  148. 148.
    Lin, G.-D., Duan, L.-M.: Sympathetic cooling in a large ion crystal. Quantum Inf. Process. 15, 1–15 (2015)Google Scholar
  149. 149.
    Kielpinski, D., Volin, C., Streed, E.W., Lenzini, F., Lobino, M.: Integrated optics architecture for trapped-ion quantum information processing. Quantum Inf. Process. 15, 1–24 (2015)Google Scholar
  150. 150.
    Eltony, A.M., Gangloff, D., Shi, M., Bylinskii, A., Vuletić, V., Chuang, I.L.: Technologies for trapped-ion quantum information systems. Quantum Inf. Process. 15, 1–33 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (Outside the USA) 2017

Authors and Affiliations

  1. 1.Joint Quantum InstituteUniversity of MarylandCollege ParkUSA
  2. 2.Army Research LaboratoryAdelphiUSA

Personalised recommendations