Skip to main content
Log in

Integration of quantum key distribution and private classical communication through continuous variable

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a scheme that integrates quantum key distribution and private classical communication via continuous variables. The integrated scheme employs both quadratures of a weak coherent state, with encrypted bits encoded on the signs and Gaussian random numbers encoded on the values of the quadratures. The integration enables quantum and classical data to share the same physical and logical channel. Simulation results based on practical system parameters demonstrate that both classical communication and quantum communication can be implemented over distance of tens of kilometers, thus providing a potential solution for simultaneous transmission of quantum communication and classical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dus̆ek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    Article  ADS  Google Scholar 

  2. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)

    Article  ADS  Google Scholar 

  3. Grosshans, F., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, P.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inf. Comput. 3, 535–553 (2003)

    MathSciNet  MATH  Google Scholar 

  4. García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)

    Article  ADS  Google Scholar 

  5. Navascués, M., Grosshans, F., Acín, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006)

    Article  ADS  Google Scholar 

  6. Leverrier, A., Grangier, P.: Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 81, 062314 (2010)

    Article  ADS  Google Scholar 

  7. Grosshans, F., Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003)

    Article  ADS  Google Scholar 

  8. Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., Grangier, P.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76, 042305 (2007)

    Article  ADS  Google Scholar 

  9. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7, 378–381 (2013)

    Article  ADS  Google Scholar 

  10. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    Article  ADS  Google Scholar 

  11. Shannon, C.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  12. Peters, N.A., Toliver, P., Chapuran, T.E., Runser, R.J., McNown, S.R., Peterson, C.G., Rosenberg, D., Dallmann, N., Hughes, R.J., McCabe, K.P., Nordholt, J.E., Tyagi, K.T.: Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments. New J. Phys. 11, 045012 (2009)

    Article  ADS  Google Scholar 

  13. Qi, B., Zhu, W., Qian, L., Lo, H.-K.: Feasibility of quantum key distribution through a dense wavelength division multiplexing network. New J. Phys. 12, 103042 (2010)

    Article  ADS  Google Scholar 

  14. Kumar, R., Qin, H., Alleaume, R.: Coexistence of continuous variable QKD with intense DWDM classical channels. New J. Phys. 17, 043027 (2015)

    Article  ADS  Google Scholar 

  15. Qi, B.: Simultaneous classical communication and quantum key distribution using continuous variable. Phys. Rev. A 94, 042340 (2016)

    Article  ADS  Google Scholar 

  16. Wilde, M.M., Hsieh, M.-H.: Public and private resource trade-offs for a quantum channel. Quantum Inf. Process. 11, 1465–1501 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Wilde, M.M., Hsieh, M.-H.: The quantum dynamic capacity formula of a quantum channel. Quantum Inf. Process. 11, 1431–1463 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Renner, R.: Symmetry of large physical systems implies independence of subsystems. Nat. Phys. 3, 645–649 (2007)

    Article  Google Scholar 

  19. Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504 (2009)

    Article  ADS  Google Scholar 

  20. Kikuchi, K.: Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34, 157–179 (2016)

    Article  ADS  Google Scholar 

  21. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  22. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Transm. 9, 177–183 (1973)

    Google Scholar 

  23. Jouguet, P., Kunz-Jacques, S., Leverrier, A.: Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 84, 062317 (2011)

    Article  ADS  Google Scholar 

  24. Chang, F., Onohara, K., Mizuochi, T.: Forward error correction for 100 G transport networks. IEEE Commun. Mag. 48, S48–S55 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported in part by the Special Project of International Cooperation and Exchange of Ministry of Science and Technology of China (No. 2014DFA00670), the National Science & Technology Support Program (No. 2015BAK28B02), in part by the Major Project of Guizhou Province (No. [2016]3022), in part by the Science & Technology Cooperation Project of Guizhou Province (No. [2014]7002, No. [2016]7431), in part by the Science Foundation of Guizhou Province (No. [2017]1047), and in part by the Scientific Research Foundation for Talent Introduced in Guizhou University (No. [2015]45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjiang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Gong, F., Lu, A. et al. Integration of quantum key distribution and private classical communication through continuous variable. Quantum Inf Process 16, 289 (2017). https://doi.org/10.1007/s11128-017-1740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1740-6

Keywords

Navigation