Equivalence of Szegedy’s and coined quantum walks

Abstract

Szegedy’s quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover’s algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover’s oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover’s oracle. These equivalences lie outside the previously known equivalence of Szegedy’s quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    ADS  Article  Google Scholar 

  2. 2.

    Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    ADS  Article  Google Scholar 

  3. 3.

    Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pp. 22–31. IEEE Computer Society (2004)

  4. 4.

    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. Theory Comput. 4(8), 169–190 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND–OR formula of size \({N}\) can be evaluated in time \({N}^{1/2+O(1)}\) on a quantum computer. SIAM J. Comput. 39(6), 2513–2530 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Montanaro, A.: Quantum walk speedup of backtracking algorithms. arXiv:1509.02374 [quant-ph] (2016)

  8. 8.

    Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Childs, A.M., Gosset, D., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791–794 (2013)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    ADS  Article  Google Scholar 

  12. 12.

    Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 01(04), 507–518 (2003)

    Article  MATH  Google Scholar 

  13. 13.

    Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pp. 32–41. IEEE Computer Society, Washington DC (2004)

  15. 15.

    Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Meyer, D.A.: On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A 223(5), 337–340 (1996)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, STOC ’01, pp. 50–59. ACM, New York (2001)

  18. 18.

    Magniez, F., Nayak, A., Richter, P.C., Santha, M.: On the hitting times of quantum versus random walks. Algorithmica 63(1), 91–116 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Whitfield, J.D.: Reflections in Hilbert space IV: quantum walk via Szegedy’s scheme. http://jdwhitfield.com/isi.lecture.4.pdf (2012)

  20. 20.

    Portugal, R.: Establishing the equivalence between Szegedy’s and coined quantum walks using the staggered model. Quantum Inf. Process. 15(4), 1387–1409 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Portugal, R., Segawa, E.: Connecting coined quantum walks with Szegedy’s model. Interdiscip. Inf. Sci. 23(1), 119–125 (2017)

    MathSciNet  Google Scholar 

  22. 22.

    Santos, R.A.M.: Szegedy’s quantum walk with queries. Quantum Inf. Process. 15(11), 4461–4475 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219. ACM, New York (1996)

  24. 24.

    Štefaňák, M., Skoupý, S.: Perfect state transfer by means of discrete-time quantum walk search algorithms on highly symmetric graphs. Phys. Rev. A 94, 022301 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 1099–1108. SIAM, Philadelphia (2005)

  26. 26.

    Wong, T.G., Ambainis, A.: Quantum search with multiple walk steps per oracle query. Phys. Rev. A 92, 022338 (2015)

    ADS  Article  Google Scholar 

  27. 27.

    Wong, T.G., Santos, R.A.M.: Exceptional quantum walk search on the cycle. Quantum Inf. Process. 16(6), 154 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Santos, R.A.M., Portugal, R.: Quantum hitting time on the cycle. In: Proceedings of the 3rd WECIQ Workshop/School of Computation and Quantum Information (2010)

  29. 29.

    Santos, R.A.M., Portugal, R.: Quantum hitting time on the complete graph. Int. J. Quantum Inf. 08(05), 881–894 (2010)

    Article  MATH  Google Scholar 

  30. 30.

    Moore, C., Russell, A.: Quantum walks on the hypercube. In: Proceedings of the 6th International Workshop on Randomization and Approximation Techniques in Computer Science, RANDOM 2002, pp. 164–178. Springer, Berlin (2002)

  31. 31.

    Ambainis, A., Prūsis, K., Vihrovs, J., Wong, T.G.: Oscillatory localization of quantum walks analyzed by classical electric circuits. Phys. Rev. A 94, 062324 (2016)

    ADS  Article  Google Scholar 

  32. 32.

    Wong, T.G.: Quantum walk search through potential barriers. J. Phys. A: Math. Theor. 49(48), 484002 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Marquezino, F.L., Portugal, R., Abal, G., Donangelo, R.: Mixing times in quantum walks on the hypercube. Phys. Rev. A 77, 042312 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Marquezino, F.L., Portugal, R., Abal, G.: Mixing times in quantum walks on two-dimensional grids. Phys. Rev. A 82, 042341 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    Ambainis, A., Rivosh, A.: Quantum walks with multiple or moving marked locations. In: Proceedings of the 34th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2008, pp. 485–496. Springer, Nový Smokovec, Slovakia (2008)

  36. 36.

    Nahimovs, N., Rivosh, A.: Quantum walks on two-dimensional grids with multiple marked locations. In: Proceedings of the 42nd International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2016, pp. 381–391. Springer, Harrachov, Czech Republic (2016)

  37. 37.

    Lara, P.C.S., Portugal, R., Boettcher, S.: Quantum walks on Sierpinski gaskets. Int. J. Quantum Inf. 11(08), 1350069 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A: Math. Theor. 48(43), 435304 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Prūsis, K., Vihrovs, J., Wong, T.G.: Doubling the success of quantum walk search using internal-state measurements. J. Phys. A: Math. Theor. 49(45), 455301 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Prūsis, K., Vihrovs, J., Wong, T.G.: Stationary states in quantum walk search. Phys. Rev. A 94, 032334 (2016)

    ADS  Article  MATH  Google Scholar 

  41. 41.

    Wong, T.G.: Quantum walk search on Johnson graphs. J. Phys. A: Math. Theor. 49(19), 195303 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. 42.

    Janmark, J., Meyer, D.A., Wong, T.G.: Global symmetry is unnecessary for fast quantum search. Phys. Rev. Lett. 112, 210502 (2014)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Thanks to Peter Høyer for pointing out Fact 3.2 of [18]. This work was supported by the U.S. Department of Defense Vannevar Bush Faculty Fellowship of Scott Aaronson.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Wong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, T.G. Equivalence of Szegedy’s and coined quantum walks. Quantum Inf Process 16, 215 (2017). https://doi.org/10.1007/s11128-017-1667-y

Download citation

Keywords

  • Szegedy’s quantum walk
  • Coined quantum walk
  • Spatial search
  • Query model