Quantum Information Processing

, 16:215 | Cite as

Equivalence of Szegedy’s and coined quantum walks

Article

Abstract

Szegedy’s quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover’s algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover’s oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover’s oracle. These equivalences lie outside the previously known equivalence of Szegedy’s quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.

Keywords

Szegedy’s quantum walk Coined quantum walk Spatial search Query model 

References

  1. 1.
    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pp. 22–31. IEEE Computer Society (2004)Google Scholar
  4. 4.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. Theory Comput. 4(8), 169–190 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND–OR formula of size \({N}\) can be evaluated in time \({N}^{1/2+O(1)}\) on a quantum computer. SIAM J. Comput. 39(6), 2513–2530 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Montanaro, A.: Quantum walk speedup of backtracking algorithms. arXiv:1509.02374 [quant-ph] (2016)
  8. 8.
    Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Childs, A.M., Gosset, D., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791–794 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 01(04), 507–518 (2003)CrossRefMATHGoogle Scholar
  13. 13.
    Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pp. 32–41. IEEE Computer Society, Washington DC (2004)Google Scholar
  15. 15.
    Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Meyer, D.A.: On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A 223(5), 337–340 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, STOC ’01, pp. 50–59. ACM, New York (2001)Google Scholar
  18. 18.
    Magniez, F., Nayak, A., Richter, P.C., Santha, M.: On the hitting times of quantum versus random walks. Algorithmica 63(1), 91–116 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Whitfield, J.D.: Reflections in Hilbert space IV: quantum walk via Szegedy’s scheme. http://jdwhitfield.com/isi.lecture.4.pdf (2012)
  20. 20.
    Portugal, R.: Establishing the equivalence between Szegedy’s and coined quantum walks using the staggered model. Quantum Inf. Process. 15(4), 1387–1409 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Portugal, R., Segawa, E.: Connecting coined quantum walks with Szegedy’s model. Interdiscip. Inf. Sci. 23(1), 119–125 (2017)MathSciNetGoogle Scholar
  22. 22.
    Santos, R.A.M.: Szegedy’s quantum walk with queries. Quantum Inf. Process. 15(11), 4461–4475 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219. ACM, New York (1996)Google Scholar
  24. 24.
    Štefaňák, M., Skoupý, S.: Perfect state transfer by means of discrete-time quantum walk search algorithms on highly symmetric graphs. Phys. Rev. A 94, 022301 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 1099–1108. SIAM, Philadelphia (2005)Google Scholar
  26. 26.
    Wong, T.G., Ambainis, A.: Quantum search with multiple walk steps per oracle query. Phys. Rev. A 92, 022338 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Wong, T.G., Santos, R.A.M.: Exceptional quantum walk search on the cycle. Quantum Inf. Process. 16(6), 154 (2017)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Santos, R.A.M., Portugal, R.: Quantum hitting time on the cycle. In: Proceedings of the 3rd WECIQ Workshop/School of Computation and Quantum Information (2010)Google Scholar
  29. 29.
    Santos, R.A.M., Portugal, R.: Quantum hitting time on the complete graph. Int. J. Quantum Inf. 08(05), 881–894 (2010)CrossRefMATHGoogle Scholar
  30. 30.
    Moore, C., Russell, A.: Quantum walks on the hypercube. In: Proceedings of the 6th International Workshop on Randomization and Approximation Techniques in Computer Science, RANDOM 2002, pp. 164–178. Springer, Berlin (2002)Google Scholar
  31. 31.
    Ambainis, A., Prūsis, K., Vihrovs, J., Wong, T.G.: Oscillatory localization of quantum walks analyzed by classical electric circuits. Phys. Rev. A 94, 062324 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Wong, T.G.: Quantum walk search through potential barriers. J. Phys. A: Math. Theor. 49(48), 484002 (2016)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Marquezino, F.L., Portugal, R., Abal, G., Donangelo, R.: Mixing times in quantum walks on the hypercube. Phys. Rev. A 77, 042312 (2008)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Marquezino, F.L., Portugal, R., Abal, G.: Mixing times in quantum walks on two-dimensional grids. Phys. Rev. A 82, 042341 (2010)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Ambainis, A., Rivosh, A.: Quantum walks with multiple or moving marked locations. In: Proceedings of the 34th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2008, pp. 485–496. Springer, Nový Smokovec, Slovakia (2008)Google Scholar
  36. 36.
    Nahimovs, N., Rivosh, A.: Quantum walks on two-dimensional grids with multiple marked locations. In: Proceedings of the 42nd International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2016, pp. 381–391. Springer, Harrachov, Czech Republic (2016)Google Scholar
  37. 37.
    Lara, P.C.S., Portugal, R., Boettcher, S.: Quantum walks on Sierpinski gaskets. Int. J. Quantum Inf. 11(08), 1350069 (2013)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A: Math. Theor. 48(43), 435304 (2015)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Prūsis, K., Vihrovs, J., Wong, T.G.: Doubling the success of quantum walk search using internal-state measurements. J. Phys. A: Math. Theor. 49(45), 455301 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Prūsis, K., Vihrovs, J., Wong, T.G.: Stationary states in quantum walk search. Phys. Rev. A 94, 032334 (2016)ADSCrossRefMATHGoogle Scholar
  41. 41.
    Wong, T.G.: Quantum walk search on Johnson graphs. J. Phys. A: Math. Theor. 49(19), 195303 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Janmark, J., Meyer, D.A., Wong, T.G.: Global symmetry is unnecessary for fast quantum search. Phys. Rev. Lett. 112, 210502 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Texas at AustinAustinUSA
  2. 2.Department of PhysicsCreighton UniversityOmahaUSA

Personalised recommendations