Skip to main content
Log in

Quantum arithmetic with the quantum Fourier transform

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum Fourier transform offers an interesting way to perform arithmetic operations on a quantum computer. We review existing quantum Fourier transform adders and multipliers and comment some simple variations that extend their capabilities. These modified circuits can perform modular and non-modular arithmetic operations and work with signed integers. Among the operations, we discuss a quantum method to compute the weighted average of a series of inputs in the transform domain. One of the circuits, the controlled weighted sum, can be interpreted as a circuit to compute the inner product of two data vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Beckman, D., Chari, A.N., Devabhaktuni, S., Preskill, J.: Efficient networks for quantum factoring. Phys. Rev. A 54, 1034–1063 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gossett, P.: Quantum carry-save arithmetic. arXiv:quant-ph/9808061v2 (1998)

  5. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184v1 (2004)

  6. Van Meter, R., Itoh, K.M.: Fast quantum modular exponentiation. Phys. Rev. A 71, 052320 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead adder. Quantum Inf. Comput. 6(4), 351–369 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Álvarez-Sánchez, J.J., Álvarez-Bravo, J.V., Nieto, L.M.: A quantum architecture for multiplying signed integers. J. Phys. Conf. Ser. 128(1), 012013 (2008)

    Article  Google Scholar 

  9. Takahashi, Y., Kunihiro, N.: A fast quantum circuit for addition with few qubits. Quantum Inf. Comput. 8(6), 636–649 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded fan-out. Quantum Inf. Comput. 10(9&10), 0872–0890 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Markov, I.L., Saeedi, M.: Constant-optimized quantum circuits for modular multiplication and exponentiation. Quantum Inf. Comput. 12(5&6), 361–394 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Thapliyal, H., Ranganathan, N.: Design of efficient reversible logic-based binary and BCD adder circuits. ACM J. Emerg. Technol. Comput. Syst. (JETC) 9(3), 17 (2013)

    Google Scholar 

  13. Nguyen, T.D., Van Meter, R.: A resource-efficient design for a reversible floating point adder in quantum computing. ACM J. Emerg. Technol. Comput. Syst. (JETC) 11(2), 13 (2014)

    Google Scholar 

  14. Davies, J.T., Rickerd, C.J., Grimes, M.A., Guney, D.O.: An n-bit general implementation of Shor’s quantum period-finding algorithm. Quantum Inf. Comput. 16(7&8), 700–718 (2016)

    MathSciNet  Google Scholar 

  15. Babu, H.M.H.: Cost-efficient design of a quantum multiplier-accumulator unit. Quantum Inf. Process. 16(1), 30 (2017)

    Article  ADS  Google Scholar 

  16. Meter, R.V., Munro, W.J., Nemoto, K., Itoh, K.M.: Arithmetic on a distributed-memory quantum multicomputer. J. Emerg. Technol. Comput. Syst. 3(4), 2:1–2:23 (2008)

    Article  Google Scholar 

  17. Trisetyarso, A., Van Meter, R.: Circuit design for a measurement-based quantum carry-lookahead adder. Int. J. Quantum Inf. 08(05), 843–867 (2010)

    Article  MATH  Google Scholar 

  18. Wiebe, N., Roetteler, M.: Quantum arithmetic and numerical analysis using repeat-until-success circuits. Quantum Inf. Comput. 16(1&2), 134–178 (2016)

    MathSciNet  Google Scholar 

  19. Choi, B.-S., Van Meter, R.: A \(\Theta (\sqrt{n})\)-depth quantum adder on the 2D NTC quantum computer architecture. J. Emerg. Technol. Comput. Syst. 8(3), 24:1–24:22 (2012)

    Article  Google Scholar 

  20. Draper, T.G.: Addition on a quantum computer. arXiv:quant-ph/0008033v1 (2000)

  21. Beauregard, S.: Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Inf. Comput. 3(2), 175–185 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Beauregard, S., Brassard, G., Fernandez, J.M.: Quantum arithmetic on Galois fields. arXiv:quant-ph/0301163v1 (2003)

  23. Pavlidis, A., Gizopoulos, D.: Fast quantum modular exponentiation architecture for Shor’s factoring algorithm. Quantum Inf. Comput. 14(7 & 8), 649–682 (2014)

    MathSciNet  Google Scholar 

  24. Maynard, C., Pius, E.: A quantum multiply-accumulator. Quantum Inf. Process. 13(5), 1127–1138 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Daboul, J., Wang, X., Sanders, B.C.: Quantum gates on hybrid qudits. J. Phys. A Math. Gen 36(10), 2525–2536 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Fushman, I., Englund, D., Faraon, A., Stoltz, N., Petroff, P., Vučković, J.: Controlled phase shifts with a single quantum dot. Science 320(5877), 769–772 (2008)

    Article  ADS  Google Scholar 

  27. Nam, Y.S., Blümel, R.: Robustness of the quantum Fourier transform with respect to static gate defects. Phys. Rev. A 89(4), 769–772 (2014)

    Article  Google Scholar 

  28. Hirose, M., Cappellaro, P.: Coherent feedback control of a single qubit in diamond. Nature 532(7597), 77–80 (2016)

    Article  ADS  Google Scholar 

  29. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  30. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A 454, 339–354 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Terhal, B.M., Smolin, J.A.: Single quantum querying of a database. Phys. Rev. A 58(3), 1822–1826 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  33. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7(3), 281–292 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer Series in Statistics, Springer, New York (2009)

    MATH  Google Scholar 

  36. Dürr, C., Hoyer, P.: A quantum algorithm for finding the minimum. eprint arXiv:quant-ph/9607014 (1996)

  37. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  Google Scholar 

  38. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)

    Article  ADS  MATH  Google Scholar 

  39. Aaronson, S.: Read the fine print. Nat. Phys. 11(4), 291–293 (2015)

    Article  Google Scholar 

  40. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

L. Ruiz-Perez has been funded by the FPI fellowship programme of the Spanish Ministry of Economy, Industry and Competitiveness (Grant BES-2015-074514). J.C. Garcia-Escartin has been funded by Project TEC2015-69665-R (MINECO/FEDER, UE) and Junta de Castilla y León Project No. VA089U16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Ruiz-Perez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Perez, L., Garcia-Escartin, J.C. Quantum arithmetic with the quantum Fourier transform. Quantum Inf Process 16, 152 (2017). https://doi.org/10.1007/s11128-017-1603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1603-1

Keywords

Navigation