Skip to main content
Log in

Restoration of three-qubit entanglements and protection of tripartite quantum state sharing over noisy channels via environment-assisted measurement and reversal weak measurement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The restoration of three-qubit entanglement is investigated under the amplitude damping (AD) decoherence with environment-assisted measurement (EAM) and reversal weak measurement (RWM). The results show that there exists a critical strength of RWM dependent of the initial three-qubit entangled state under a given damping rate of the AD channel, i.e., if the selected RWM strength is higher than the critical strength, the entanglement will be reduced compared to one without RWM. Some three-qubit entangled states cannot be restored. We calculated the restorable condition of the initial entanglement and illustrated the valid area for three-qubit GHZ state and W state. Fortunately, an optimal strength of RWM corresponding to a certain damping rate of AD channels can be found within the valid area for a restorable initial state, by which a noise-infected entanglement can be restored to its maximum value. Particularly, when three qubits of W state are subjected to their respective AD channels, due to the symmetry of three qubits, the W state cannot be decohered provided the EAM is successful, and no RWM is required. This is beneficial to quantum communication over the noisy channel. Applying this protection regime to tripartite QSS and taking appropriate initial entangled state as the quantum channel, the fidelity of the shared state can be improved to the maximum 1 probabilistically. Thus, the decoherence effect of the noisy channels can be significantly suppressed or even avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeaue, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  3. Riebe, M., Häffner, H., Roos, C.F., Hänsel, W., Benhelm, J., Lancaster, G.P.T., Körber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Boströem, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  8. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  9. Zhang, Y.J., Man, Z.X., Zou, X.B., Xia, Y.J., Guo, G.C.: Dynamics of multipartite entanglement in the non-Markovian environments. J. Phys. B 43, 045502 (2010)

    Article  ADS  Google Scholar 

  10. Zhang, Y.J., Xia, Y.J., Fan, H.: Role of initial system-bath correlation on coherence trapping. Sci. Rep. 5, 13359 (2015)

    Article  ADS  Google Scholar 

  11. Zhang, Y.J., Han, W., Xia, Y.J., Yu, Y.M., Fan, H.: Control of quantum dynamics: non-Markovianity and the speedup of the open system. Europhys. Lett. 116, 30001 (2016)

    Article  ADS  Google Scholar 

  12. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  13. Pan, J.W., Simon, C., Brukner, C., Zelliinger, A.: Entanglement purification for quantum communication. Nature (London) 410, 1067 (2001)

    Article  ADS  Google Scholar 

  14. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeillinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature (London) 423, 417 (2003)

    Article  ADS  Google Scholar 

  15. Paunković, N., Omar, Y., Bose, S., Vedral, V.: Entanglement concentration using quantum statistics. Phys. Rev. Lett. 88, 187903 (2002)

    Article  ADS  Google Scholar 

  16. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  17. Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343 (2003)

    Article  ADS  Google Scholar 

  18. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  19. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)

    Article  ADS  Google Scholar 

  20. Zhang, Y.J., Zou, X.B., Xia, Y.J., Guo, G.C.: Different entanglement dynamical behaviors due to initial system-environment correlations. Phys. Rev. A 82, 022108 (2010)

    Article  ADS  Google Scholar 

  21. Zhang, Y.J., Han, W., Xia, Y.J., Tian, J.X., Fan, H.: Speedup of quantum evolution of multiqubit entanglement states. Sci. Rep. 6, 27349 (2016)

    Article  ADS  Google Scholar 

  22. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  23. Kim, Y.S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  24. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  25. Xu, X.M., Cheng, L.Y., Liu, A.P., Su, S.L., Wang, H.F., Zhang, S.: Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Inf. Process. 14, 4147 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Wang, X.W., Yu, S., Zhang, D.Y., Oh, C.H.: Effect of weak measurement on entanglement distribution over noisy channels. Sci. Rep. 6, 22408 (2016)

    Article  ADS  Google Scholar 

  27. Zhang, Y.J., Han, W., Fan, H., Xia, Y.J.: Enhancing entanglement trapping by weak measurement and quantum measurement reversal. Ann. Phys. New York 354, 202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  29. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

  30. Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)

    Article  ADS  Google Scholar 

  31. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  32. Wang, H.F., Ji, X., Zhang, S.: Improving the security of multiparty quantum secret splitting and quantum state sharing. Phys. Lett. A 358, 11–14 (2006)

    Article  ADS  MATH  Google Scholar 

  33. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp. 380–381. Higher Education Press, Cambridge (2003)

    Google Scholar 

  36. Sabín, C., García-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435–442 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  37. Miranowicz, A., Grudka, A.: A comparative study of relative entropy of entanglement, concurrence and negativity. J. Opt. B Quantum Semiclassical Opt. 6, 542 (2004)

    Article  ADS  Google Scholar 

  38. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundations of China under Grant Nos. 11564041, 11165015, 11264042, 11465020 and 61465013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Dong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, SY., Jin, Z., Wu, HJ. et al. Restoration of three-qubit entanglements and protection of tripartite quantum state sharing over noisy channels via environment-assisted measurement and reversal weak measurement. Quantum Inf Process 16, 137 (2017). https://doi.org/10.1007/s11128-017-1584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1584-0

Keywords

Navigation