Skip to main content
Log in

Direct-dynamical Entanglement–Discord relations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this article, by considering Bell-diagonal two-qubit initial states under local dynamics generated by the Phase Damping, Bit Flip, Phase Flip, Bit Phase Flip, and Depolarizing channels, we report some elegant direct-dynamical relations between geometric measures of Entanglement and Discord. The complex scenario appearing already in this simplified case study indicates that a similarly simple relation shall hardly be found in more general situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696–702 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555 (1935)

    Article  ADS  MATH  Google Scholar 

  4. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information (Cambridge Series on Information and the Natural Sciences). Cambridge University Press, Cambridge (2000)

    Google Scholar 

  5. Preskill, J.: Quantum Information, lecture notes. www.theory.caltech.edu/~preskill/ph219/index.html (2015)

  6. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  7. Zurek, W.H.: Quantum darwinism. Nat. Phys. 5(3), 181–188 (2009). doi:10.1038/nphys1202

    Article  Google Scholar 

  8. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464(7285), 45–53 (2010)

    Article  ADS  Google Scholar 

  9. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014)

    Article  ADS  Google Scholar 

  10. Ekert, A., Renner, R.: The ultimate physical limits of privacy. Nature 507(7493), 443–447 (2014)

    Article  ADS  Google Scholar 

  11. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5(4), 222–229 (2011)

    Article  ADS  Google Scholar 

  12. Jarzynski, C.: Diverse phenomena, common themes. Nat. Phys. 11, 105–107 (2015)

    Article  Google Scholar 

  13. McFadden, J., Al-Khalili, J.: Life on the Edge: The Coming of Age of Quantum Biology. Crown Publishers, New York (2014)

    Google Scholar 

  14. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)

    Article  ADS  MATH  Google Scholar 

  15. Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quantum Inf. Process. 13(11), 2567–2586 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning. ArXiv e-prints (2014)

  17. Venegas-Andraca, S.E.: Introductory words: special issue on quantum image processing published by quantum information processing. Quantum Inf. Process. 14(5), 1535–1537 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Marvian, I., Spekkens, R.W.: Extending noethers theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)

    Article  ADS  Google Scholar 

  19. Pastawski, F., Yoshida, B., Harlow, D., Preskill, J.: Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J. High Energy Phys. 6, 149 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Spekkens, R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71, 052,108 (2005)

    Article  Google Scholar 

  21. Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R., Joshi, P., Kłobus, W., Wójcik, A.: Quantifying contextuality. Phys. Rev. Lett. 112, 120,401 (2014)

    Article  Google Scholar 

  22. van Dam, W., Grunwald, P., Gill, R.: The statistical strength of nonlocality proofs. eprint arXiv:quant-ph/0307125 (2003)

  23. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)

    Article  ADS  Google Scholar 

  24. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140,402 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, Q.Y., Gong, Q.H., Reid, M.D.: Classifying directional gaussian entanglement, Einstein–Podolsky–Rosen steering, and discord. Phys. Rev. Lett. 114, 060,402 (2015)

    Article  Google Scholar 

  26. Bruß, D.: Characterizing entanglement. J. Math. Phys. 43, 4237–4251 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Plenio, M.B., Virmani, S.: An Introduction to Entanglement Measures. eprint arXiv:quant-ph/0504163 (2005)

  28. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Aolita, L., de Melo, F., Davidovich, L.: Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78(4), 042,001 (2015)

    Article  Google Scholar 

  30. Sun, W.Y., Shi, J.D., Wang, D., Ye, L.: Exploring the global entanglement and quantum phase transition in the spin 1/2 xxz model with Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 15, 245–253 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Sharma, K.K., Pandey, S.: Robustness of Greenberger–Horne–Zeilinger and w states against Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 15(12), 4995–5009 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sun, W.Y., Wang, D., Yang, J., Ye, L.: Enhancement of multipartite entanglement in an open system under non-inertial frames. Quantum Inf. Process. 16(4), 90 (2017)

    Article  ADS  Google Scholar 

  33. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017,901 (2001)

    Article  MATH  Google Scholar 

  34. Céleri, L.C., Maziero, J., Serra, R.M.: Theoretical and Experimental Aspects of Quantum Discord and Related Measures. ArXiv e-prints (2011)

  35. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  36. Streltsov, A.: Quantum Correlations Beyond Entanglement and Their Role in Quantum Information Theory. Springer, New York (2015)

    MATH  Google Scholar 

  37. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140,401 (2014)

    Article  Google Scholar 

  38. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020,403 (2015)

    Article  MathSciNet  Google Scholar 

  39. Shimony, A.: Degree of entanglement. In: D.M. Greenberger, A. Zelinger (eds.) Fundamental Problems in Quantum Theory. Annals of the New York Academy of Sciences, vol. 755, p. 675 (1995)

  40. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042,307 (2003)

    Article  Google Scholar 

  41. Bellomo, B., Giorgi, G.L., Galve, F., Lo Franco, R., Compagno, G., Zambrini, R.: Unified view of correlations using the square-norm distance. Phys. Rev. A 85, 032,104 (2012)

    Article  Google Scholar 

  42. Bellomo, B., Lo Franco, R., Compagno, G.: Dynamics of geometric and entropic quantifiers of correlations in open quantum systems. Phys. Rev. A 86, 012,312 (2012)

    Article  Google Scholar 

  43. Dakić, B., Vedral, V., Brukner, I.C.V.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190,502 (2010)

    Article  MATH  Google Scholar 

  44. Adesso, G., Girolami, D.: Gaussian geometric discord. Int. J. Quantum Inf. 09((07n08)), 1773–1786 (2011)

    Article  MATH  Google Scholar 

  45. Song-Ya, M., Ming-Xing, L.: Relative ordering of square-norm distance correlations in open quantum systems. Chin. Phys. B 23(10), 100,302 (2014)

    Article  Google Scholar 

  46. Ruskai, M.B.: Beyond strong subadditivity? Improved bounds on the contraction of the generalized relative entropy. Rev. Math. Phys. 06(05a), 1147–1161 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ozawa, M.: Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A 268, 158–160 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Wang, X., Schirmer, S.G.: Contractivity of the Hilbert–Schmidt distance under open-system dynamics. Phys. Rev. A 79, 052,326 (2009)

    Article  Google Scholar 

  49. Streltsov, A., Kampermann, H., Bruß, D.: Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160,401 (2011)

    Article  Google Scholar 

  50. Piani, M., Gharibian, S., Adesso, G., Calsamiglia, J., Horodecki, P., Winter, A.: All nonclassical correlations can be activated into distillable entanglement. Phys. Rev. Lett. 106, 220,403 (2011)

    Article  Google Scholar 

  51. Cornelio, M., de Oliveira, M., Fanchini, F.: Entanglement irreversibility from quantum discord and quantum deficit. Phys. Rev. Lett. 107(2), 020502 (2011)

    Article  ADS  Google Scholar 

  52. Fanchini, F., Cornelio, M., de Oliveira, M., Caldeira, A.: Conservation law for distributed entanglement of formation and quantum discord. Phys. Rev. A 84(1), 012313 (2011)

    Article  ADS  Google Scholar 

  53. Cen, L.X., Li, X.Q., Shao, J., Yan, Y.: Quantifying quantum discord and entanglement of formation via unified purifications. Phys. Rev. A 83, 054,101 (2011)

    Article  Google Scholar 

  54. Al-Qasimi, A., James, D.F.V.: A comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations. ArXiv e-prints (2010)

  55. Girolami, D., Adesso, G.: Interplay between computable measures of entanglement and other quantum correlations. Phys. Rev. A 84, 052,110 (2011)

    Article  Google Scholar 

  56. Piani, M., Adesso, G.: Quantumness of correlations revealed in local measurements exceeds entanglement. Phys. Rev. A 85, 040,301 (2012)

    Article  Google Scholar 

  57. Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024,302 (2012)

    Article  Google Scholar 

  58. Campbell, S.: Predominance of entanglement of formation over quantum discord under quantum channels. Quantum Inf. Process. 12, 2623 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Costa, A., Beims, M., Angelo, R.: Generalized discord, entanglement, Einstein–Podolsky–Rosen steering, and bell nonlocality in two-qubit systems under (non-)markovian channels: hierarchy of quantum resources and chronology of deaths and births. ArXiv e-prints (2013)

  60. Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022,322 (2008)

    Article  Google Scholar 

  61. Paula, F.M., Silva, I.A., Montealegre, J.D., Souza, A.M., deAzevedo, E.R., Sarthour, R.S., Saguia, A., Oliveira, I.S., Soares-Pinto, D.O., Adesso, G., Sarandy, M.S.: Observation of environment-induced double sudden transitions in geometric quantum correlations. Phys. Rev. Lett. 111, 250,401 (2013)

    Article  Google Scholar 

  62. Maziero, J., Auccaise, R., Celeri, L.C., Soares-Pinto, D.O., deAzevedo, E.R., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Quantum discord in nuclear magnetic resonance systems at room temperature. Braz. J. Phys. 43, 86 (2013)

    Article  ADS  Google Scholar 

  63. Mohamed, N., Sadiq, M., Elias, A., Mohamed, B.: Experimental measurement-device-independent entanglement detection. Sci. Rep. 5, 8048 (2014)

    Google Scholar 

  64. Horodecki, R., Horodecki, P., Horodecki, M.: Violating bell inequality by mixed spin-12 states: necessary and sufficient condition. Phys. Lett. A 200(5), 340–344 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838–1843 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Lang, M.D., Caves, C.M.: Quantum discord and the geometry of bell-diagonal states. Phys. Rev. Lett. 105, 150,501 (2010)

    Article  Google Scholar 

  67. Wang, Y.K., Ma, T., Fan, H., Fei, S.M., Wang, Z.X.: Super-quantum correlation and geometry for bell-diagonal states with weak measurements. Quantum Inf. Process. 13(2), 283–297 (2014)

    Article  MATH  Google Scholar 

  68. Lewenstein, M., Sanpera, A.: Separability and entanglement of composite quantum systems. Phys. Rev. Lett. 80, 2261–2264 (1998)

    Article  ADS  Google Scholar 

  69. Wellens, T., Kus, M.: Separable approximation for mixed states of composite quantum systems. Phys. Rev. A 64, 052,302 (2001)

    Article  Google Scholar 

  70. Ishizaka, S.: Analytical formula connecting entangled states and the closest disentangled state. Phys. Rev. A 67, 060,301 (2003)

    Article  MathSciNet  Google Scholar 

  71. Hashemi Rafsanjani, S.M., Huber, M., Broadbent, C.J., Eberly, J.H.: Genuinely multipartite concurrence of \(n\)-qubit \(x\) matrices. Phys. Rev. A 86, 062,303 (2012)

    Article  Google Scholar 

  72. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “x” states. Quantum Inf. Comput. 7(5), 459–468 (2007)

    MathSciNet  MATH  Google Scholar 

  73. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the schatten 1-norm. Phys. Rev. A 87, 064,101 (2013)

    Article  Google Scholar 

  74. Konrad, T., de Melo, F., Tiersch, M., Kasztelan, C., Aragao, A., Buchleitner, A.: Evolution equation for quantum entanglement. Nat. Phys. 4(4), 99–102 (2008). doi:10.1038/nphys885

    Article  Google Scholar 

  75. Tiersch, M., de Melo, F., Konrad, T., Buchleitner, A.: Equation of motion for entanglement. Quantum Inf. Process. 8(6), 523 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  76. Xu, J.S., Li, C.F., Xu, X.Y., Shi, C.H., Zou, X.B., Guo, G.C.: Experimental characterization of entanglement dynamics in noisy channels. Phys. Rev. Lett. 103, 240,502 (2009)

    Article  Google Scholar 

  77. Jiménez Farías, O., Lombard Latune, C., Walborn, S.P., Davidovich, L., Souto Ribeiro, P.H.: Determining the dynamics of entanglement. Science 324(5933), 1414–1417 (2009)

    Article  ADS  Google Scholar 

  78. Yuan, H., Wei, L.F.: Geometric measure of quantum discord under decoherence and the relevant factorization law. Int. J. Theor. Phys. 52(3), 987–996 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

JM acknowledges the financial support of the Brazilian funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), process 441875/2014-9, Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), process 2008/57856-6, and Coordenação de Desenvolvimento de Pessoal de Nível Superior (CAPES), process 6531/2014-08. JM thanks the hospitality of the Physics Institute and Laser Spectroscopy Group at the Universidad de la República, Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Auyuanet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, V., Maziero, J. & Auyuanet, A. Direct-dynamical Entanglement–Discord relations. Quantum Inf Process 16, 128 (2017). https://doi.org/10.1007/s11128-017-1580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1580-4

Keywords

Navigation