Skip to main content
Log in

Systematic and deterministic graph minor embedding for Cartesian products of graphs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The limited connectivity of current and next-generation quantum annealers motivates the need for efficient graph minor embedding methods. These methods allow non-native problems to be adapted to the target annealer’s architecture. The overhead of the widely used heuristic techniques is quickly proving to be a significant bottleneck for solving real-world applications. To alleviate this difficulty, we propose a systematic and deterministic embedding method, exploiting the structures of both the specific problem and the quantum annealer. We focus on the specific case of the Cartesian product of two complete graphs, a regular structure that occurs in many problems. We decompose the embedding problem by first embedding one of the factors of the Cartesian product in a repeatable pattern. The resulting simplified problem comprises the placement and connecting together of these copies to reach a valid solution. Aside from the obvious advantage of a systematic and deterministic approach with respect to speed and efficiency, the embeddings produced are easily scaled for larger processors and show desirable properties for the number of qubits used and the chain length distribution. We conclude by briefly addressing the problem of circumventing inoperable qubits by presenting possible extensions of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. It is worth mentioning that the ferromagnetic coupling between any two adjacent vertices should not be too strong. This is because the parameter range of the annealer is limited, so a very strong coupling will lead to a rescaling of the rest of the problem, which can prove detrimental.

  2. This argument is due to Marshall Drew-Brook, and we would like to thank Aidan Roy for pointing it out to us.

References

  1. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Faster parameterized algorithms for minor containment. Theor. Comput. Sci. 412(50), 7018–7028 (2011). doi:10.1016/j.tcs.2011.09.015. http://www.sciencedirect.com/science/article/pii/S0304397511007912

  2. Alghassi, H.: The algebraic QUBO design framework. To be published

  3. Bodlaender, H.L., Koster, A.M.: Treewidth computations i. upper bounds. Inf. Comput. 208(3), 259–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in chimera qubit connectivity graphs. Quantum Inf. Process. 15(1), 495–508 (2016). doi:10.1007/s11128-015-1150-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors. Preprint (2014). arXiv:1406.2741

  6. Choi, V.: Minor-embedding in adiabatic quantum computation: \({\rm II}\). \({\rm M}\)inor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011). doi:10.1007/s11128-010-0200-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Dridi, R., Alghassi, H.: Homology computation of large point clouds using quantum annealing. Preprint (2015). arXiv:1512.09328

  8. Fan, N., Pardalos, P.M.: Linear and quadratic programming approaches for the general graph partitioning problem. J. Glob. Optim. 48(1), 57–71 (2010). doi:10.1007/s10898-009-9520-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Godsil, C., Royle, G.: Algebraic Graph Theory, Volume 207 of Graduate Texts in Mathematics (2001)

  10. Grohe, M., Marx, D.: On tree width, bramble size, and expansion. J. Comb. Theory Ser. B 99(1), 218–228 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hager, W.W., Krylyuk, Y.: Graph partitioning and continuous quadratic programming. SIAM J. Discret. Math. 12(4), 500–523 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hernandez, M., Zaribafiyan, A., Aramon, M., Naghibi, M.: A novel graph-based approach for determining molecular similarity. Preprint (2016). arXiv:1601.06693

  13. Imrich, W., Peterin, I.: Recognizing \({\rm C}\)artesian products in linear time. Discret. Math. 307(3–5), 472–483 (2007)

    Article  MATH  Google Scholar 

  14. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

    Article  ADS  Google Scholar 

  15. Kaminsky, W., Lloyd, S.: Scalable architecture for adiabatic quantum computing of \(\rm NP\)-hard problems. In: Leggett, A., Ruggiero, B., Silvestrini, P. (eds.) Quantum Computing and Quantum Bits in Mesoscopic Systems, pp. 229–236. Springer, New York (2004). doi:10.1007/978-1-4419-9092-1_25

  16. Kaplansky, I., Riordan, J.: The problem of the rooks and its applications. Duke Math. J. 13(2), 259–268 (1946). doi:10.1215/S0012-7094-46-01324-5

    Article  MathSciNet  MATH  Google Scholar 

  17. King, A.D., Lanting, T., Harris, R.: Performance of a quantum annealer on range-limited constraint satisfaction problems. Preprint (2015). arXiv:1502.02098

  18. Lucena, B.: Achievable sets, brambles, and sparse treewidth obstructions. Discret. Appl. Math. 155(8), 1055–1065 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pardalos, P.M., Mavridou, T., Xue, J.: Handbook of Combinatorial Optimization: volume 2, chap. The Graph Coloring Problem: A Bibliographic Survey, pp. 1077–1141. Springer, Boston (1999). doi:10.1007/978-1-4613-0303-9_16

  20. Perdomo-Ortiz, A., Fluegemann, J., Biswas, R., Smelyanskiy, V.N.: A performance estimator for quantum annealers: gauge selection and parameter setting. Preprint (2015). arXiv:1503.01083

  21. Perdomo-Ortiz, A., O’Gorman, B., Fluegemann, J., Biswas, R., Smelyanskiy, V.N.: Determination and correction of persistent biases in quantum annealers. Sci. Rep. 6, 18628 (2016)

  22. Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2014). doi:10.1007/s11128-014-0892-x

    Article  ADS  MATH  Google Scholar 

  23. Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)

    Article  ADS  MATH  Google Scholar 

  24. Seymour, P.D., Thomas, R.: Graph searching and a min–max theorem for tree-width. J. Comb. Theory Ser. B 58(1), 22–33 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thomas, R.: Tree-decompositions of graphs (lecture notes). School of Mathematics. Georgia Institute of Technology, Atlanta, 30332 (1996)

  26. Venturelli, D., Mandrà, S., Knysh, S., O’Gorman, B., Biswas, R., Smelyanskiy, V.: Quantum optimization of fully connected spin glasses. Phys. Rev. X 5, 031040 (2015). doi:10.1103/PhysRevX.5.031040

    Google Scholar 

  27. Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling. Preprint (2015). arXiv:1506.08479

  28. Young, K.C., Blume-Kohout, R., Lidar, D.A.: Adiabatic quantum optimization with the wrong Hamiltonian. Phys. Rev. A 88, 062314 (2013). doi:10.1103/PhysRevA.88.062314

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Marko Bucyk for editing the manuscript, to Brad Woods, Natalie Mullin, Abbas Mehrabian, and Robyn Foerster for useful discussions and input, and to Aidan Roy for providing useful information on the treewidth of Chimera graphs. This work was supported by Mitacs (Grant No. IT03226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Zaribafiyan.

Ethics declarations

Conflict of interest

The authors are employees of 1QBit, a company that has quantum software as one of its areas of focus. D-Wave Systems is a minority investor in 1QBit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaribafiyan, A., Marchand, D.J.J. & Changiz Rezaei, S.S. Systematic and deterministic graph minor embedding for Cartesian products of graphs. Quantum Inf Process 16, 136 (2017). https://doi.org/10.1007/s11128-017-1569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1569-z

Keywords

Navigation