Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange’s identity and wedge product

  • Vineeth S. Bhaskara
  • Prasanta K. PanigrahiEmail author


Concurrence, introduced by Hill and Wootters (Phys Rev Lett 78:5022, 1997), provides an important measure of entanglement for a general pair of qubits that is faithful: strictly positive for entangled states and vanishing for all separable states. Such a measure captures the entire content of entanglement, providing necessary and sufficient conditions for separability. We present an extension of concurrence to multiparticle pure states in arbitrary dimensions by a new framework using the Lagrange’s identity and wedge product representation of separability conditions, which coincides with the “I-concurrence” of Rungta et al. (Phys Rev A 64:042315, 2001) who proposed by extending Wootters’s spin-flip operator to a so-called universal inverter superoperator. Our framework exposes an inherent geometry of entanglement and may be useful for the further extensions to mixed and continuous variable states.


Quantum entanglement Separability Multiparticle pure states Lagrange’s identity Wedge product 



Bhaskara is thankful to Oliver Knill for pointing out the Binet–Cauchy identity. This work was supported by the National Initiative on Undergraduate Science (NIUS) undertaken by the Homi Bhabha Centre for Science Education, Tata Institute of Fundamental Research (HBCSE–TIFR), Mumbai, India. The authors acknowledge Vijay Singh and Praveen Pathak for continuous encouragement.


  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  2. 2.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.W.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2, 678–682 (2006)CrossRefGoogle Scholar
  4. 4.
    Vedral, V.: Quantum entanglement. Nat. Phys. 10, 256–258 (2014). (and references therein)CrossRefGoogle Scholar
  5. 5.
    Zhang, B., Liu, X., Wang, J., Tang, C.: Quantum teleportation of an arbitrary N-qubit state via GHZ-like states. Int. J. Theor. Phys. 55, 1601–1611 (2016)zbMATHCrossRefGoogle Scholar
  6. 6.
    Tan, X., Zhang, X., Fang, J.: Perfect quantum teleportation by four-particle cluster state. Inf. Proc. Lett. 116(5), 347–350 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cowen, R.: The quantum source of space–time. Nature 527, 290–293 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Van Raamsdonk, M.: Building up spacetime with quantum entanglement. Gen. Relativ. Gravit. 42, 2323–2329 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Sawicki, A., Huckleberry, A., Kuś, M.: Symplectic geometry of entanglement. Commun. Math. Phys. 305, 441–468 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Zhu, J.M.: Quantum correlation properties in composite parity-conserved matrix product states. Int. J. Theor. Phys 55, 4157–4175 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Simon, R.: Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Doran, C.J.L., Lasenby, A.N.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  17. 17.
    Ahlfors, L.V.: Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1978)Google Scholar
  18. 18.
    Stillwell, J.: Mathematics and Its History, 2nd edn. Springer, New York (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Marcus, M., Minc, H.: Introduction to Linear Algebra. Dover Publications, New York (1965)zbMATHGoogle Scholar
  20. 20.
    Knill, O.: Cauchy–Binet for pseudo-determinants. Linear Algebra Appl. 459, 522–547 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    van der Waerden, B.L.: Algebra, vol. 1. Springer, New York (2003)zbMATHGoogle Scholar
  22. 22.
    Higuchi, A., Sudbery, A.: How entangled can two couples get? Phys. Lett. A 273, 213–217 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Enriquez, M., Wintrowicz, I., Zyczkowski, K.: Maximally entangled multipartite states. J. Phys. Conf. Ser. 698, 012003 (2016)CrossRefGoogle Scholar
  24. 24.
    Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A 38, 1119 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A 40, 13407 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Gao, C., Ma, S.Y., Chen, W.L.: Controlled remote preparation via the brown state with no restriction. Int. J. Theor. Phys. 55, 2643–2652 (2016)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Indian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Indian Institute of Science Education and Research KolkataMohanpurIndia

Personalised recommendations