Abstract
As far as the spectral characteristic of quantum information is concerned, the existing quantum network coding schemes can be looked on as the discrete-variable quantum network coding schemes. Considering the practical advantage of continuous variables, in this paper, we explore two feasible continuous-variable quantum network coding (CVQNC) schemes. Basic operations and CVQNC schemes are both provided. The first scheme is based on Gaussian cloning and ADD/SUB operators and can transmit two coherent states across with a fidelity of 1/2, while the second scheme utilizes continuous-variable quantum teleportation and can transmit two coherent states perfectly. By encoding classical information on quantum states, quantum network coding schemes can be utilized to transmit classical information. Scheme analysis shows that compared with the discrete-variable paradigms, the proposed CVQNC schemes provide better network throughput from the viewpoint of classical information transmission. By modulating the amplitude and phase quadratures of coherent states with classical characters, the first scheme and the second scheme can transmit \(4{\log _2}N\) and \(2{\log _2}N\) bits of information by a single network use, respectively.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahlswede, R., Cai, N., Li, S.Y.R., et al.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)
Hayashi, M., Iwama, K.: Quantum network coding. In: Proceedings of the 2007 Symposium Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 4393, pp. 610–621 (2007)
Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76(4), 1–5 (2007)
Satoh, T., Gall, F.L., Imai, H.: Quantum network coding for quantum repeaters. Phys. Rev. A 86(3), 1–8 (2012)
Braunstein, S.L., Loock, P.V.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513–577 (2005)
Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49(2), 1473–1476 (1994)
Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61(2), 022309 (1999)
Cerf, N.J., Lvy, M., Assche, G.V.: Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 63(5), 535–540 (2001)
Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)
Bartlett, S.D., Sanders, B.C., Braunstein, S.L., et al.: Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett. 88(9), 47–55 (2001)
Miwa, Y., Yoshikawa, J.I., van Loock, P., et al.: Demonstration of a universal one-way quantum quadratic phase gate. Phys. Rev. A 80(5), 050303 (2009)
Cerf, N.J., Ipe, A., Rottenberg, X.: Cloning of continuous quantum variables. Phys. Rev. Lett. 85(8), 1754–1757 (2000)
Fiurasek, J.: Optical implementation of continuous-variable quantum cloning machines. Phys. Rev. Lett. 86(21), 4942 (2001)
Andersen, U.L., Josse, V., Leuchs, G.: Unconditional quantum cloning of coherent states with linear optics. Phys. Rev. Lett. 94(24), 240503 (2005)
Zeng, G., Lee, M., Guo, Y., et al.: Continuous variable quantum signature algorithm. Int. Quantum Inf. 5(4), 553–573 (2007)
Weedbrook, C., Lance, A.M., Bowen, W.P., et al.: Quantum cryptography without switching. Phys. Rev. Lett. 93(17), 170504-1–170504-4 (2004)
Zavatta, A., Fiurasek, J., Bellini, M.: A high-fidelity noiseless amplifier for quantum light states. Nat. Photonics 5(1), 52–60 (2011)
Grosshans, F., Grangier, P.: Quantum cloning and teleportation criteria for continuous quantum variables. Phys. Rev. A 64(1), 783–97 (2001)
Bernstein, H.J.: Must quantum theory assume unrestricted superposition? J. Math. Phys. 15(10), 1677–1679 (1974)
Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80(4), 869 (1998)
Braunstein, S.L., Fuchs, C.A., Kimble, H.J.: Criteria for continuous-variable quantum teleportation. J. Mod. Opt. 47(2–3), 267–278 (2000)
Banaszek, K.: Optimal receiver for quantum cryptography with two coherent states. Phys. Lett. A 253(1), 12–15 (1999)
van Enk, S.J.: Unambiguous state discrimination of coherent states with linear optics: application to quantum cryptography. Phys. Rev. A 66, 042313 (2002)
Muller, C., Usuga, M.A., Wittmann, C., et al.: Quadrature phase shift keying coherent state discrimination via a hybrid receiver. New J. Phys. 14(8), 83009–83021 (2012)
Becerra, F.E., Fan, J., Migdall, A.: Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states. Nat. Commun. 4(3), 131–140 (2013)
da Silva, M.P., Guha, S., Dutton, Z.: Optimal discrimination of M coherent states with a small quantum computer. In: Eleventh International Conference on Quantum Communication, Measurement and Computation (QCMC), vol. 1633(1), pp. 225–227 (2014)
Gottesman, D., Kitaev, A., Preskill, J.: Encoding a qubit in an oscillator. Phys. Rev. A 64(1), 012310 (2001)
Chuang, I.L., Leung, D.W., Yamamoto, Y.: Bosonic quantum codes for amplitude damping. Phys. Rev. A 56(2), 1114 (1997)
Holevo, A.S., Werner, R.F.: Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63(3), 032312 (2001)
Holevo, A.S.: One-mode quantum Gaussian channels: structure and quantum capacity. Probl. Inf. Transm. 43(1), 1–11 (2007)
Weedbrook, C., Pirandola, S., Garca-Patrn, R., et al.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)
Caruso, F., Giovannetti, V.: Degradability of bosonic Gaussian channels. Phys. Rev. A 74(6), 062307 (2006)
Cubitt, T., Elkouss, D., Matthews, W., et al.: Unbounded number of channel uses may be required to detect quantum capacity. Nat. Commun. 6, 6739 (2015)
Caves, C.M.: Quantum limits on noise in linear amplifiers. Phys. Rev. D 26(8), 1817 (1982)
Acknowledgements
This project was supported by the National Natural Science Foundation of China (No. 61571024) and the National Key Research and Development Program of China (No. 2016YFC1000307) for valuable helps.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shang, T., Li, K. & Liu, Jw. Continuous-variable quantum network coding for coherent states. Quantum Inf Process 16, 107 (2017). https://doi.org/10.1007/s11128-017-1565-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1565-3