Skip to main content
Log in

Resonant transition-based quantum computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this article we assess a novel quantum computation paradigm based on the resonant transition (RT) phenomenon commonly associated with atomic and molecular systems. We thoroughly analyze the intimate connections between the RT-based quantum computation and the well-established adiabatic quantum computation (AQC). Both quantum computing frameworks encode solutions to computational problems in the spectral properties of a Hamiltonian and rely on the quantum dynamics to obtain the desired output state. We discuss how one can adapt any adiabatic quantum algorithm to a corresponding RT version and the two approaches are limited by different aspects of Hamiltonians’ spectra. The RT approach provides a compelling alternative to the AQC under various circumstances. To better illustrate the usefulness of the novel framework, we analyze the time complexity of an algorithm for 3-SAT problems and discuss straightforward methods to fine tune its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In this case, the initial state \(\left| \Psi _s \right\rangle \) is also the eigenstate of \(H_s\) with eigenvalue \(-1\) such that \(\left| \Psi _s \right\rangle \) that will be excited to other eigenstates with higher eigenvalues.

  2. On Mathematica, harmonicnumber(M,2), is bounded from above by \(\frac{\pi ^2}{6} - \frac{2M-1}{2M^2}\) by use of Laurent series.

  3. On Mathematica, harmonicnumber(M,1/2)/M, is approximately \(2\sqrt{\frac{1}{M}}\) by Puiseux series.

  4. On Mathematica, (harmonicnumber \(((M*(M+1)/2),1/2))/M\) converges around 1.5. Since \(K=\frac{M(M+1)}{2}\), then \( O\left( \frac{2 \times 1.5\sqrt{N}}{\gamma (M+1)}\right) \simeq O\left( \sqrt{N}/(n\gamma )\right) \).

References

  1. Deutsch, D., Jozsa, R.: Rapid solutions of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th IEEE Symposium on Foundations of Computer Science. pp. 124–134 (1994)

  3. Denchev, V., Boixo, S., Isakov, S., Ding, N., Babbush, R., Smelyanskiy, V., Martinis, J., Neven, H.: What is the computational value of finite range tunneling. arXiv:1512.02206 [quant-ph]

  4. Crosson, E., Harrow, A.: Simulated quantum annealing can be exponentially faster than classical simulated annealing. arXiv:1601.03030 [quant-ph]

  5. Farhi, E., Goldston, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. MIT-CTP-2936 (2000)

  6. Dam, V., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum computation, FOCS ’01. In: Proceedings of the 42nd IEEE symposium on Foundations of Computer Science, pp. 279–287 (2001)

  7. Wang, H., Ashhab, S., Nori, F.: Quantum algorithm for obtaining the energy spectrum of a physical system. Phys. Rev. A 85, 062304 (2012)

    Article  ADS  Google Scholar 

  8. Wang, H., Fan, H., Li, F.: A quantum algorithm for solving some discrete mathematical problems by probing their energy spectra. Phys. Rev. A 89, 012306 (2013)

    Article  ADS  Google Scholar 

  9. Wiebe, N., Berry, D., Hyer, P., Sander, B.: Simulating quantum dynamics on a quantum computer. J. Phys. A: Math. Theor. 44(44) (2011)

  10. Laumann, C., Moessner, R., Scardicchio, A., Sondhi, S.: Quantum annealing: the fastest route to quantum computation? Eur. Phys. J. Spec. Top. 224, 75 (2015)

    Article  Google Scholar 

  11. Wang, H., Ashhab, S., Nori, F.: Quantum algorithm for simulating the dynamics of an open quantum system. Phys. Rev. A 83, 062317 (2011)

    Article  ADS  Google Scholar 

  12. Scully, M., Zubairy, M.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  13. Terhal, B., DiVincenzo, D.: Problem of equilibration and the computation of correlation functions on a quantum computer. Phys. Rev. A 61, 022301 (2000)

    Article  ADS  Google Scholar 

  14. Wang, H.: Quantum algorithm for obtaining the eigenstates of a physical system. Phys. Rev. A 93, 052334 (2016)

    Article  ADS  Google Scholar 

  15. Biamonte, J., Love, P.: Realizable hamiltonians for universal adiabatic quantum computers. Phys. Rev. A 78, 012352 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Biamonte, J.: Non-perturbative k-body to two-body commuting conversion hamiltonians and embedding problem instances into Ising spins. Phys. Rev. A 77, 052331 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Liu, W.Z., Zhang, J.F., Deng, Z.W., Long, G.L.: Simulation of general three-body interactions in a nulcear magnetic resonance ensemble quantum computer. Sci. China Ser. G Phys. Mech. Astron. 51, 1089–1096 (2008)

    Article  ADS  MATH  Google Scholar 

  18. Cetina, M., Bylinskii, A., Karpa, L., Gangloff, D., Beck, K.M., Ge, Y., Scholz, M., Grier, A.T., Chuang, I., Vuletic, V.: One-dimensional array of ion chains coupled to an optical cavity. New J. Phys. 15, 053001 (2013)

    Article  ADS  Google Scholar 

  19. Messiah, A.: Quantum Mechanics, vol. II. Amsterdam, Wiley, North Holland, New York (1976)

    MATH  Google Scholar 

  20. Wong, T., Meyer, D.: Irreconcilable difference between quantum walks and adiabatic quantum computing. Phys. Rev. A 93, 062313 (2016)

    Article  ADS  Google Scholar 

  21. Mézard, M., Parisi, G., Zecchian, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297(5582), 812–815 (2002)

    Article  ADS  Google Scholar 

  22. Peng, X., Liao, Z., Xu, N., Qin, G., Zhou, X., Suter, D., Du, J.: Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101, 220405 (2008)

    Article  ADS  Google Scholar 

  23. Crawford, J., Auton, L.: Experimental results on the crossover point in satisfiability problems. In: Proceedings of the 11th National Conference on AI, pp. 21-27 (1993)

  24. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributionsof SAT problems. In: Proceedings of the 10th National Conference on AI, pp. 459-465 (1992)

  25. Huberman, B.A., Hogg, T.: Phase transitions in artificial intelligence systems. Artif. Intell. 33(2), 155–171 (1987)

    Article  Google Scholar 

  26. Garraway, B.: The Dicke model in quanutm optics: Dicke model revisited. Philos. Trans. R. Soc. A 369, 1137–1155 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

  28. Ghoreishi, S., Sarbishaei, M., Jvidan, K.: Entanglement between two Tavis–Cummings systems with N = 2. Int. J. Theor. Math. Phys. 2(6), 187–195 (2012)

    Article  Google Scholar 

  29. Horvath, L., Sanders, B.: Photon coincidence spectroscopy for two-atom cavity quantum electrodynamics. J. Mod. Opt. 49(1–2), 285–303 (2002)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

C. C. gratefully acknowledges the support from the State University of New York Polytechnic Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yu Hsieh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, CF., Hsieh, CY. Resonant transition-based quantum computation. Quantum Inf Process 16, 120 (2017). https://doi.org/10.1007/s11128-017-1552-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1552-8

Keywords

Navigation