Limitations on post-processing assisted quantum programming

  • Teiko Heinosaari
  • Takayuki Miyadera
  • Mikko Tukiainen
Article
  • 92 Downloads

Abstract

A quantum multimeter is a programmable device that can implement measurements of different observables depending on the programming quantum state inserted into it. The advantage of this arrangement over a single-purpose device is in its versatility: one can realize various measurements simply by changing the programming state. The classical manipulation of measurement output data is known as post-processing. In this work we study the post-processing assisted quantum programming, which is a protocol where quantum programming and classical post-processing are combined. We provide examples showing that these two processes combined can be more efficient than either of them used separately. Furthermore, we derive an inequality relating the programming resources to their corresponding programmed observables, thereby enabling us to study the limitations on post-processing assisted quantum programming.

Keywords

Quantum measurement Quantum multimeter Quantum programming Data post-processing Joint measurement 

Notes

Acknowledgements

M.T. acknowledges financial support from the University of Turku Graduate School (UTUGS). The authors are grateful to Juha-Pekka Pellonpää and Tom Bullock for their comments on the manuscript.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Programmable quantum gate arrays. Phys. Rev. Lett. 79, 321 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Buscemi, F.: All entangled quantum states are nonlocal phys. Rev. Lett. 108, 200401 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Ozawa, M.: Quantum measuring processes of continuous observables. J. Math. Phys. 25, 79–87 (1984)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ziman, M., Bužek, V.: Realization of positive-operator-valued measures using measurement-assisted programmable quantum processors. Phys. Rev. A 72, 022343 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    D’Ariano, G.M., Perinotti, P.: Efficient universal programmable quantum measurements. Phys. Rev. Lett. 94, 090401 (2005)CrossRefGoogle Scholar
  6. 6.
    Heinosaari, T., Tukiainen, M.: Notes on deterministic programming of quantum observables and channels. Quantum Inf. Process. 14, 3097–3114 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ali, S.T., Carmeli, C., Heinosaari, T., Toigo, A.: Commutative POVMs and fuzzy observables. Found. Phys. 39, 593–612 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lahti, P.: Coexistence and joint measurability in quantum mechanics. Int. J. Theor. Phys. 42, 893 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Jenc̆ová, A., Pulmannová, S.: How sharp are PV measures? Rep. Math. Phys. 59, 257266 (2007)MathSciNetGoogle Scholar
  10. 10.
    Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement, 2nd edn. Springer, Berlin (1996)MATHGoogle Scholar
  11. 11.
    Dušek, M., Bužek, V.: Quantum-controlled measurement device for quantum-state discrimination. Phys. Rev. A 66, 022112 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Fiurašek, J., Dušek, M., Filip, R.: Universal measurement apparatus controlled by quantum software. Phys. Rev. Lett. 89, 190401 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Holevo, A.S.: Statistical Structure of Quantum Theory. Springer, Berlin (2001)CrossRefMATHGoogle Scholar
  14. 14.
    Hayashi, M.: A Group Theoretic Approach to Quantum Information. Springer, Berlin (2006)Google Scholar
  15. 15.
    Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Discrete phase space based on finite field. Phys. Rev. A 70, 062101 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Tukiainen, M., Lyyra, H., Sarbicki, G., Maniscalco, S.: Fidelity of dynamical maps. arXiv:1609.00482
  17. 17.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 10th Anniversary edn. Cambridge University Press, New York (2010)Google Scholar
  18. 18.
    Pérez-García, D.: Optimality of programmable quantum measurements. Phys. Rev. A 73, 052315 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, Turku Centre for Quantum PhysicsUniversity of TurkuTurkuFinland
  2. 2.Department of Nuclear EngineeringKyoto UniversityKyotoJapan

Personalised recommendations