Skip to main content
Log in

Quantum correlations in a family of bipartite separable qubit states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum correlations (QCs) in some separable states have been proposed as a key resource for certain quantum communication tasks and quantum computational models without entanglement. In this paper, a family of nine-parameter separable states, obtained from arbitrary mixture of two sets of bi-qubit product pure states, is considered. QCs in these separable states are studied analytically or numerically using four QC quantifiers, i.e., measurement-induced disturbance (Luo in Phys Rev A77:022301, 2008), ameliorated MID (Girolami et al. in J Phys A Math Theor 44:352002, 2011),quantum dissonance (DN) (Modi et al. in Phys Rev Lett 104:080501, 2010), and new quantum dissonance (Rulli in Phys Rev A 84:042109, 2011), respectively. First, an inherent symmetry in the concerned separable states is revealed, that is, any nine-parameter separable states concerned in this paper can be transformed to a three-parameter kernel state via some certain local unitary operation. Then, four different QC expressions are concretely derived with the four QC quantifiers. Furthermore, some comparative studies of the QCs are presented, discussed and analyzed, and some distinct features about them are exposed. We find that, in the framework of all the four QC quantifiers, the more mixed the original two pure product states, the bigger QCs the separable states own. Our results reveal some intrinsic features of QCs in separable systems in quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Ekert, A.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)

    Article  ADS  MATH  Google Scholar 

  8. Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    Article  ADS  Google Scholar 

  9. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  10. Furusawa, A., et al.: Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  11. Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  14. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Li, T., Ren, B.C., Wei, H.R., Hua, M., Deng, F.G.: High-efficiency multipartite entanglement purification of electron-spin states with charge detection. Quantum Inf. Process. 12, 855 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  17. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  18. Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)

    Article  ADS  Google Scholar 

  19. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  20. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  21. Li, Q.T., Cui, J.L., Wang, S.H., Long, G.L.: Study of a monogamous entanglement measure for three-qubit quantum systems. Quantum Inf. Process. 15, 2405 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Munro, W.J., Van, M.R., et al.: High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008)

    Article  ADS  Google Scholar 

  23. Zukowski, M., Zeilinger, A., et al.: “Event-Ready-Detectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  24. Goebel, A.M., Wagenknecht, C., Zhang, Q., et al.: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403 (2008)

    Article  ADS  Google Scholar 

  25. Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)

    Article  ADS  Google Scholar 

  26. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  27. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  28. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  29. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  30. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Zhou, T., Cui, J., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)

    Article  ADS  Google Scholar 

  32. Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011)

    Article  MATH  Google Scholar 

  33. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  34. Zhang, F.L., Chen, J.L.: Irreducible multiqutrit correlations in Greenberger-Horne-Zeilinger-type states. Phys. Rev. A. 84, 062328 (2011)

    Article  ADS  Google Scholar 

  35. Ye, B.L., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Analytic expressions of quantum correlations in qutrit Werner states. Quantum Inf. Process. 12, 2355 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Tang, H.J., Liu, Y.M., Chen, J.L., Ye, B.L., Zhang, Z.J.: Analytic expressions of discord and geometric discord in Werner derivatives. Quantum Inf. Process. 13, 1331 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  38. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  39. Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)

    Article  ADS  Google Scholar 

  40. Dakic, B., Lipp, Y.O., Ma, X., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  41. Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328 (2012)

    Article  ADS  Google Scholar 

  42. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  43. Lloyd, S.: Quantum search without entanglement. Phys. Rev. A 61, 010301 (1999)

    Article  MathSciNet  Google Scholar 

  44. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000)

    Article  ADS  Google Scholar 

  45. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  46. Werlang, T., Souza, S., Fanchini, F.F., Villas, B.C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  47. Wei, H.R., Ren, B.C., Deng, F.G.: Geometric measure of quantum discord for a two-parameter class of states in a qubitCqutrit system under various dissipative channels. Quantum Inf. Process. 12, 1109 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Ren, B.C., Wei, H.R., Deng, F.G.: Correlation dynamics of a two-qubit system in a bell-diagonal state under non-identical local noises. Quantum Inf. Process. 13, 1175 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Guo, J.L., Li, H., Long, G.L.: Decoherent dynamics of quantum correlations in qubit–qutrit systems. Quantum Inf. Process. 12, 3421 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Li, B., Wang, Z.X., Fei, S.M.: Geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)

    Article  ADS  Google Scholar 

  51. Shi, M., Sun, C., Jiang, F., Yan, X., Du, J.: Optimal measurement for quantum discord of two-qubit states. Phys. Rev. A 85, 064104 (2012)

    Article  ADS  Google Scholar 

  52. Wei, H.R., Ren, B.C., Deng, F.G.: Geometric measure of quantum discord for a two-parameter class of states in a qubit–qutrit system under various dissipative channels. Quantum Inf. Process. 12, 1109 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Giorgi, G.L., Bellomo, B., Galve, F., Zambrini, R.: Genuine quantum and classical correlations in multipartite systems. Phys. Rev. Lett. 107, 190501 (2011)

    Article  ADS  Google Scholar 

  54. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  55. Gessner, M., Laine, E.M., Breuer, H.P., Piilo, J.: Correlations in quantum states and the local creation of quantum discord. Phys. Rev. A 85, 052122 (2012)

    Article  ADS  Google Scholar 

  56. Madsen, L.S., Berni, A., Lassen, M., Andersen, U.L.: Experimental investigation of the evolution of gaussian quantum discord in an open system. Phys. Rev. Lett. 109, 030402 (2012)

    Article  ADS  Google Scholar 

  57. Zou, C., Chen, X., et al.: Photonic simulation of system-environment interaction: non-Markovian processes and dynamical decoupling. Phys. Rev. A 88, 063806 (2013)

    Article  ADS  Google Scholar 

  58. Dajka, J., et al.: Swapping of correlations via teleportation with decoherence. Phys. Rev. A 87, 022301 (2013)

    Article  ADS  Google Scholar 

  59. Lanyon, B.P., Jurcevic, P., Hempel, C., et al.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013)

    Article  ADS  Google Scholar 

  60. Rana, S., Parashar, P.: Tight lower bound on geometric discord of bipartite states. Phys. Rev. A 85, 024102 (2012)

    Article  ADS  Google Scholar 

  61. Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)

    Article  ADS  Google Scholar 

  62. Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)

    Article  ADS  Google Scholar 

  63. Chang, L., Luo, S.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)

    Article  ADS  Google Scholar 

  64. Miranowicz, A., Horodecki, P., Chhajlany, R.W., Tuziemski, J., Sperling, J.: Analytical progress on symmetric geometric discord: measurement-based upper bounds. Phys. Rev. A 86, 042123 (2012)

    Article  ADS  Google Scholar 

  65. Xie, C.M., Liu, Y.M., Xing, H., Chen, J.L., Zhang, Z.J.: Quantum correlation swapping. Quantum Inf. Process. 14, 653 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Xie, C.M., Liu, Y.M., Chen, J.L., Zhang, Z.J.: Study of quantum correlation swapping with relative entropy methods. Quantum Inf. Process. 15, 809 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Cen, L.X., Li, X.Q., Shao, J.S., Yan, Y.J.: Quantifying quantum discord and entanglement of formation via unified purifications. Phys. Rev. A 83, 054101 (2011)

    Article  ADS  Google Scholar 

  68. Xie, C.M., Liu, Y.M., Li, G.F., Zhang, Z.J.: A note on quantum correlations in Werner states under two collective noises. Quantum Inf. Process. 13, 2713 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Xie, C.M., Liu, Y.M., Chen, J.L., Yin, X.F., Zhang, Z.J.: Quantum entanglement swapping of two arbitrary bi-qubit pure states. Sci. China Phys. Mech. Astron. 59, 100314 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are very grateful to the anonymous referees and the associated editor Dr. Michael Frey for their constructive and detailed suggestions. This work is supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 11375011 and 11372122, the Natural Science Foundation of Anhui province under Grant No. 1408085MA12, and the 211 Project of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Zhang.

Appendix 1 Analyses: \(\rho _{{ab}}\) are associated with \(\varrho _{{ab}}\) through local unitary transformations

Appendix 1 Analyses: \(\rho _{{ab}}\) are associated with \(\varrho _{{ab}}\) through local unitary transformations

State in Eq. (1) can be rewritten as

$$\begin{aligned} \rho _{{ab}}=q |\varphi _1\rangle _{{a}} \langle \varphi _1| |\varphi _2\rangle _{{b}}\langle \varphi _2| +(1-q)|\varphi _3\rangle _{{a}} \langle \varphi _3| |\varphi _4\rangle _{{b}}\langle \varphi _4|. \end{aligned}$$
(46)

Firstly, by using the following transformations \(U_{1a}\) and \(U_{2b}\), which are local unitary operations performed on qubits a and b respectively,

$$\begin{aligned} U_{1a} = \left( \begin{matrix} \cos \theta _1 \quad {\text{ e }}^{i\delta _1} \sin \theta _1 \\ {\text{ e }}^{-i\delta _1 } \sin \theta _1 \quad -\cos \theta _1 \\ \end{matrix} \right) ,\ \ \ U_{2b} = \left( \begin{matrix} \cos \theta _2 \quad {\text{ e }}^{i\delta _2} \sin \theta _2 \\ {\text{ e }}^{-i\delta _2 } \sin \theta _2 \quad -\cos \theta _2 \\ \end{matrix}\right) . \end{aligned}$$
(47)

one can get

$$\begin{aligned} \rho _{{ab}}= & {} U_{1a} U_{2b}[q\ |0\rangle _{a} \langle 0| \ |0\rangle _{{b}} \langle 0|\nonumber \\&+ (1-q)U_{1{a}}^\dag U_{2b}^\dag \ |\varphi _3\rangle _{{a}} \langle \varphi _3| |\varphi _4\rangle _{{b}}\langle \varphi _4|U_{1a} U_{2b}]U_{1a}^\dag U_{2b}^\dag . \end{aligned}$$
(48)

Secondly, by performing the following local unitary transformations,

$$\begin{aligned} M_{{a}}= \left( \begin{matrix} 1 &{} 0 \\ 0 &{} \,\,\,\, {\text{ e }}^{i(\lambda _2-\lambda _1)} \\ \end{matrix}\right) , \ \ N_{{b}}=\left( \begin{matrix} 1 &{} 0 \\ 0 &{} \,\,\,\, {\text{ e }}^{i(\lambda _4-\lambda _3)} \\ \end{matrix}\right) , \end{aligned}$$
(49)

one can further get

$$\begin{aligned} \rho _{{ab}}= & {} U_{1a}M_{ {a}} U_{2 b}N_{ {b}} [ q\ |0\rangle _{{a}} \langle 0| \ |0\rangle _{{b}} \langle 0|\nonumber \\&+ (1-q)M_{{a}}^\dag U_{1a}^\dag N_{{b}}^\dag U_{2b}^\dag \ |\varphi _3\rangle _{{a}} \langle \varphi _3| |\varphi _4\rangle _{{b}}\langle \varphi _4|U_{1a}M_{ {a}} U_{2b}N_{{b}} ] M_{{a}}^\dag U_{1a}^\dag N_{{b}}^\dag U_{2b}^\dag .\nonumber \\ \end{aligned}$$
(50)

The parameters \(\lambda _i\)’s are defined as following

$$\begin{aligned} \lambda _i= & {} \arctan \left\{ \frac{\sin (\delta _{i+2}-\delta _i)\tan \theta _i \tan \theta _{i+2}}{1+ \cos (\delta _{i+2}-\delta _i)\tan \theta _i \tan \theta _{i+2}} \right\} . \end{aligned}$$
(51)

Furthermore, defining

$$\begin{aligned} U_{{a}}(\theta _1,\delta _1,\lambda _1,\omega _1 )=U_{1a} M_{{a}}, \ \ U_{{b}}(\theta _2,\delta _2,\lambda _2,\omega _2)=U_{2b}N_{ {b}}, \end{aligned}$$
(52)

one can get

$$\begin{aligned} \rho _{{ab}} = U_{{a}} U_{{b}} [ q\ |0\rangle _{{a}} \langle 0| \ |0\rangle _{{b}} \langle 0| + (1-q)U_{ {a}}^\dag U_{{b}}^\dag \ |\varphi _3\rangle _{{a}} \langle \varphi _3| |\varphi _4\rangle _{{b}}\langle \varphi _4|U_{{a}} U_{{b}} ]U_{{a}}^\dag U_{{b}}^\dag .\nonumber \\ \end{aligned}$$
(53)

The parameters \(\omega _i\)’s are defined as following

$$\begin{aligned} \omega _i= & {} \arctan \left\{ \frac{\sin \delta _i \tan \theta _i \cot \theta _{i+2} -\sin \delta _{i+2} }{\cos \delta _i \tan \theta _i \cot \theta _{i+2} -\cos \delta _{i+2}}\right\} , \end{aligned}$$
(54)

Lastly, in Eq. (53), \( U_{{a}}^\dag U_{{b}}^\dag \ |\varphi _3\rangle _{{a}} \langle \varphi _3| |\varphi _4\rangle _{{b}}\langle \varphi _4|U_{{a}} U_{{b}}\) can be written as

$$\begin{aligned} U_{{a}}^\dag U_{{b}}^\dag \ |\varphi _3\rangle _{{a}} \langle \varphi _3| |\varphi _4\rangle _{{b}}\langle \varphi _4|U_{{a}} U_{{b}}= |\xi \rangle _{{a}} \langle \xi | |\zeta \rangle _{{b}}\langle \zeta |, \end{aligned}$$
(55)

where \(|\xi \rangle _{{a}}= \sqrt{\alpha } |0\rangle _{{a}} +\sqrt{1-\alpha } |1\rangle _{{a}}\) and \(|\zeta \rangle _{{b}}= \sqrt{\beta } |0\rangle _{{a}} +\sqrt{1-\beta } |1\rangle _{{a}}\) with

$$\begin{aligned} \alpha = \cos ^2(\theta _1-\theta _3) - \sin 2\theta _1 \sin 2\theta _3 \sin ^2 \frac{\delta _1 - \delta _3}{2}. \end{aligned}$$
(56)
$$\begin{aligned} \beta = \cos ^2(\theta _2-\theta _4) - \sin 2\theta _2 \sin 2\theta _4 \sin ^2 \frac{\delta _2 - \delta _4}{2}. \end{aligned}$$
(57)

Finally, by defining

$$\begin{aligned} \varrho _{{ab}}= q\ |0\rangle _{{a}} \langle 0| \ |0\rangle _{{b}} \langle 0| + (1-q) |\xi \rangle _{{a}} \langle \xi | |\zeta \rangle _{{b}}\langle \zeta |, \end{aligned}$$
(58)

one can conclude that the concerned state \(\rho _{{ab}}\) in this paper are related with a kernel state \(\varrho _{{ab}}\) through local unitary transformations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Liu, Y., Chen, J. et al. Quantum correlations in a family of bipartite separable qubit states. Quantum Inf Process 16, 71 (2017). https://doi.org/10.1007/s11128-017-1532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1532-z

Keywords

Navigation