Advertisement

Teleportation of a qubit using entangled non-orthogonal states: a comparative study

  • Mitali Sisodia
  • Vikram Verma
  • Kishore Thapliyal
  • Anirban Pathak
Article

Abstract

The effect of non-orthogonality of an entangled non-orthogonal state-based quantum channel is investigated in detail in the context of the teleportation of a qubit. Specifically, average fidelity, minimum fidelity and minimum assured fidelity (MASFI) are obtained for teleportation of a single-qubit state using all the Bell-type entangled non-orthogonal states known as quasi-Bell states. Using Horodecki criterion, it is shown that the teleportation scheme obtained by replacing the quantum channel (Bell state) of the usual teleportation scheme by a quasi-Bell state is optimal. Further, the performance of various quasi-Bell states as teleportation channel is compared in an ideal situation (i.e., in the absence of noise) and under different noise models (e.g., amplitude and phase damping channels). It is observed that the best choice of the quasi-Bell state depends on the amount non-orthogonality, both in noisy and noiseless case. A specific quasi-Bell state, which was found to be maximally entangled in the ideal conditions, is shown to be less efficient as a teleportation channel compared to other quasi-Bell states in particular cases when subjected to noisy channels. It has also been observed that usually the value of average fidelity falls with an increase in the number of qubits exposed to noisy channels (viz., Alice’s, Bob’s and to be teleported qubits), but the converse may be observed in some particular cases.

Keywords

Teleportation Quasi-Bell state Entangled non-orthogonal state Quantitative measures of quality of teleportation 

Notes

Acknowledgements

VV and AP thank Department of Science and Technology (DST), India, for the support provided through the Project Number EMR/2015/000393.

References

  1. 1.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operations on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 09, 389–403 (2011)CrossRefMATHGoogle Scholar
  6. 6.
    Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196–1199 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337–1344 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Shukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099–2113 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Adhikari, S., Majumdar, A.S., Home, D., Pan, A.K., Joshi, P.: Quantum teleportation using non-orthogonal entangled channels. Phys. Scr. 85, 045001 (2012)ADSCrossRefMATHGoogle Scholar
  11. 11.
    Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45, 6811–6815 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    Mann, A., Sanders, B.C., Munro, W.J.: Bell’s inequality for an entanglement of nonorthogonal states. Phys. Rev. A 51, 989–991 (1995)Google Scholar
  13. 13.
    Van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Peres, A.: Unperformed experiments have no results. Am. J. Phys. 46, 745–747 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    Mann, A., Revzen, M., Schleich, W.: Unique Bell state. Phys. Rev. A 46, 5363–5366 (1992)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, X.: Bipartite entangled non-orthogonal states. J. Phys. A: Math. Gen. 35, 165 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Prakash, H., Chandra, N., Prakash, R.: Improving the teleportation of entangled coherent states. Phys. Rev. A 75, 044305 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Mishra, M.K., Prakash, H.: Teleportation of a two-mode entangled coherent state encoded with two-qubit information. J. Phys. B: At. Mol. Opt. Phys. 43, 185501 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Prakash, H., Mishra, M.K.: Increasing Average Fidelity by Using Non-Maximally Entangled Resource in Teleportation of Superposed Coherent States. arxiv:1107.2533 (2011)
  20. 20.
    Wang, X., Sanders, B.C., Pan, S.H.: Entangled coherent states for systems with SU(2) and SU(1,1) symmetries. J. Phys. A: Math. Gen. 33, 7451 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Prakash, H., Chandra, N., Prakash, R., Shivani, : Swapping between two pairs of nonorthogonal entangled coherent states. Int. J. Mod. Phys. B. 23, 2083–2092 (2009)ADSCrossRefMATHGoogle Scholar
  22. 22.
    Kumar, S.A., Prakash, H., Chandra, N., Prakash, R.: Noise in swapping between two pairs of non-orthogonal entangled coherent states. Mod. Phys. Lett. B. 27, 1350017 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Dong, L., Wang, J.X., Xiu, X.M., Li, D., Gao, Y.J., Yi, X.X.: A continuous variable quantum key distribution protocol based on entanglement swapping of quasi-Bell entangled coherent states. Int. J. Theor. Phys. 53, 3173–3190 (2014)CrossRefMATHGoogle Scholar
  24. 24.
    Hirota, O., Van Enk, S.J., Nakamura, K., Sohma, M., Kato, K.: Entangled Nonorthogonal States and Their Decoherence Properties. arXiv:quant-ph/0101096 (2001)
  25. 25.
    de Souza, D.D., Vidiella-Barranco, A.: Quantum Phase Estimation with Squeezed Quasi-Bell States. arxiv:1609.00370 (2016)
  26. 26.
    Prakash, H., Chandra, N., Prakash, R.: Effect of decoherence on fidelity in teleportation using entangled coherent states. J. Phys. B: At. Mol. Opt. Phys. 40, 1613 (2007)ADSCrossRefMATHGoogle Scholar
  27. 27.
    Prakash, H., Chandra, N., Prakash, R., Shivani: Effect of decoherence on fidelity in teleportation of entangled coherent states. Int. J. Quantum Inf. 6, 1077–1092 (2008)Google Scholar
  28. 28.
    Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    D’Ariano, G.M., Presti, P.L., Sacchi, M.F.: Bell measurements and observables. Phys. Lett. A 272, 32–38 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681 (2016)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)MATHGoogle Scholar
  35. 35.
    Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    Fu, H., Wang, X., Solomon, A.I.: Maximal entanglement of nonorthogonal states: classification. Phys. Rev. Lett. A 291, 73–76 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    Prakash, H., Verma, V.: Minimum assured fidelity and minimum average fidelity in quantum teleportation of single qubit using non-maximally entangled states. Quantum Inf. Process. 11, 1951–1959 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Henderson, L., Hardy, L., Vedral, V.: Two-state teleportation. Phys. Rev. A 61, 062306 (2000)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  42. 42.
    Banerjee, A., Shukla, C., Thapliyal, K, Pathak, A., Panigrahi, P. K.: Asymmetric Quantum Dialogue in Noisy Environment. Quantum Inf. Process. 16, 49 (2017). doi: 10.1007/s11128-016-1508-4
  43. 43.
    Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical Joint Remote State Preparation in Noisy Environment. arxiv:1605.07399 (2016)
  44. 44.
    Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin–qubit systems. Ann. Phys. 362, 261 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Thapliyal, K., Pathak, A., Banerjee, S.: Quantum Cryptography Over Non-Markovian Channels. arxiv:1608.06071 (2016)

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mitali Sisodia
    • 1
  • Vikram Verma
    • 1
  • Kishore Thapliyal
    • 1
  • Anirban Pathak
    • 1
  1. 1.Jaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations