Advertisement

Dynamic quantum secret sharing by using d-dimensional GHZ state

  • Huawang Qin
  • Yuewei Dai
Article

Abstract

Through generating the d-dimensional GHZ state in the Z-basis and measuring it in the X-basis, a dynamic quantum secret sharing scheme is proposed. In the proposed scheme, multiple participants can be added or deleted in one update period, and the shared secret does not need to be changed. The participants can be added or deleted by themselves, and the dealer does not need to be online. Compared to the existing schemes, the proposed scheme is more efficient and more practical.

Keywords

Quantum secret sharing Dynamic quantum secret sharing d-dimensional GHZ state Quantum cryptography 

Notes

Acknowledgements

Funding was provided by NSF of China (Grant No. 61170250).

References

  1. 1.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Li, Q., Long, D.Y., Chan, W.H., Qiu, D.W.: Sharing a quantum secret without a trusted party. Quantum Inf. Process. 10, 97–106 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Verifiable quantum (k, n)-threshold secret key sharing. Int. J. Theor. Phys. 50, 792–798 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Yang, Y.G., Jia, X., Wang, H.Y., Zhang, H.: Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf. Process. 11, 1619–1625 (2012)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Gao, G.: Secure multiparty quantum secret sharing with the collective eavesdropping-check character. Quantum Inf. Process. 12, 55–68 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen, R.K., Zhang, Y.Y., Shi, J.H., Li, F.G.: A multiparty error-correcting method for quantum secret sharing. Quantum Inf. Process. 13, 21–31 (2014)ADSCrossRefMATHGoogle Scholar
  8. 8.
    Shi, R.H., Lv, G.L., Wang, Y., Huang, D.Z., Guo, Y.: On quantum secret sharing via Chinese remainder theorem with the non-maximally entanglement state analysis. Int. J. Theor. Phys. 52, 539–548 (2013)CrossRefMATHGoogle Scholar
  9. 9.
    Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247–251 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sun, Y., Gao, F., Yuan, Z., Li, Y.B., Wen, Q.Y.: Splitting a quantum secret without the assistance of entanglements. Quantum Inf. Process. 11, 1741–1750 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Liu, L.L., Tsai, C.W., Hwang, T.: Quantum secret sharing using symmetric W state. Int. J. Theor. Phys. 51, 2291–2306 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lau, H.K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88, 042313 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Yang, Y.G., Wang, Y., Chai, H.P., Teng, Y.W., Zhang, H.: Member expansion in quantum (t, n) threshold secret sharing schemes. Opt. Commun. 284, 3479–3482 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Sun, Y., Xu, S.W., Chen, X.B., Niu, X.X., Yang, Y.X.: Expansible quantum secret sharing network. Quantum Inf. Process. 12, 2877–2888 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jia, H.Y., Wen, Q.Y., Gao, F., Qin, S.J., Guo, F.Z.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035–1041 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Chen, Q., Chen, J., Wang, K., Du, J.: Efficient construction of two-dimensional cluster states with probabilistic quantum gates. Phys. Rev. A 73, 012303 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12, 331–344 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 43, 1–14 (2002)Google Scholar
  21. 21.
    Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 41, 1–8 (2002)Google Scholar
  22. 22.
    Beveratos, A., Brouri, R., Gacoin, T., Villing, A., Poizat, J.P., Grangier, P.: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Li, Y.B., Qin, S.J., Sun, Y., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12, 2191–2205 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Li, Y.B., Xu, S.W., Wang, Q.L., Liu, F., Wan, Z.J.: Quantum key distribution based on interferometry and interaction-free measurement. Int. J. Theor. Phys. 55, 98–106 (2016)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of AutomatizationNanjing University of Science and TechnologyNanjingChina

Personalised recommendations