Transferring multiqubit entanglement onto memory qubits in a decoherence-free subspace

  • Xiao-Ling He
  • Chui-Ping Yang


Different from the previous works on generating entangled states, this work is focused on how to transfer the prepared entangled states onto memory qubits for protecting them against decoherence. We here consider a physical system consisting of n operation qubits and 2n memory qubits placed in a cavity or coupled to a resonator. A method is presented for transferring n-qubit Greenberger–Horne–Zeilinger (GHZ) entangled states from the operation qubits (i.e., information processing cells) onto the memory qubits (i.e., information memory elements with long decoherence time). The transferred GHZ states are encoded in a decoherence-free subspace against collective dephasing and thus can be immune from decoherence induced by a dephasing environment. In addition, the state transfer procedure has nothing to do with the number of qubits, the operation time does not increase with the number of qubits, and no measurement is needed for the state transfer. This proposal can be applied to a wide range of hybrid qubits such as natural atoms and artificial atoms (e.g., various solid-state qubits).


GHZ state transfer Entanglement Operation qubit Memory qubit Decoherence-free subspace Dephasing Cavity or circuit QED 



This work was supported in part by the Ministry of Science and Technology of China under Grant No. 2016YFA0301802, the National Natural Science Foundation of China under Grant Nos. 11074062 and 11374083, and the Zhejiang Natural Science Foundation under Grant Nos. LZ13A040002 and LY15A040006. This work was also supported by the funds of Hangzhou City for supporting the Hangzhou-City Quantum Information and Quantum Optics Innovation Research Team.

Compliance with ethical standards

Conflict of interest:

The authors declare that they have no conflict of interest.


  1. 1.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell theorem. In: Kafatos, M. (ed.) Bell Theorem Quantum Theory and Conceptions of the Universe. Kluwer, Dordrecht (1989)Google Scholar
  2. 2.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    Bergquist, J.C., Jefferts, S.R., Wineland, D.J.: Time measurement at the millennium. Phys. Today 54, 37 (2001)CrossRefGoogle Scholar
  5. 5.
    Leibfried, D., Barrett, M.D., Schaetz, T., Britton, J., Chiaverini, J., Itano, W.M., Jost, J.D., Langer, C., Wineland, D.J.: Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Jung, E., Hwang, M.R., JuYou, H., Kim, M.S., Yoo, S.K., Kim, H., Park, D., Son, J.W., Tamaryan, S., Cha, S.K.: Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Lu, C.Y., Yang, T., Pan, J.W.: Experimental multiparticle entanglement swapping for quantum networking. Phys. Rev. Lett. 103, 020501 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    DiVincenzo, D.P., Shor, P.W.: Fault-tolerant error correction with efficient quantum codes. Phys. Rev. Lett. 77, 3260 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    Preskill, J.: Reliable quantum computers. Proc. R. Soc. Lond. Ser. A 454, 385 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Zheng, S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87, 230404 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, X., Feng, M., Sanders, B.C.: Multipartite entangled states in coupled quantum dots and cavity QED. Phys. Rev. A 67, 022302 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Feng, W., Wang, P., Ding, X., Xu, L., Li, X.Q.: Generating and stabilizing the Greenberger–Horne–Zeilinger state in circuit QED: joint measurement, Zeno effect, and feedback. Phys. Rev. A 83, 042313 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Zhu, S.L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Bishop, L.S., et al.: Proposal for generating and detecting multi-qubit GHZ states in circuit QED. New J. Phys. 11, 073040 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Yang, C.P.: Preparation of n-qubit Greenberger–Horne–Zeilinger entangled states in cavity QED: an approach with tolerance to nonidentical qubit-cavity coupling constants. Phys. Rev. A 83, 062302 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Aldana, S., Wang, Y.D., Bruder, C.: Greenberger–Horne–Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus. Phys. Rev. B 84, 134519 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Imamoğlu, A.: Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Wesenberg, J.H., Ardavan, A., Briggs, G.A., Morton, J.J.L., Schoelkopf, R.J., Schuster, D.I., Mømer, K.: Quantum computing with an electron spin ensemble. Phys. Rev. Lett. 103, 070502 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Xiang, Z.L., Lü, X.Y., Li, T.F., You, J.Q., Nori, F.: Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble and a transmission-line resonator. Phys. Rev. B 87, 144516 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Lü, X.Y., Xiang, Z.L., Cui, W., You, J.Q., Nori, F.: Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers. Phys. Rev A 88, 012329 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Qiu, Y.Y., Xiong, W., Tian, L., You, J.Q.: Coupling spin ensembles via superconducting flux qubits. Phys. Rev. A 89, 042321 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Song, W.L., Yin, Z.Q., Yang, W.L., Zhu, X., Zhou, F., Feng, M.: One-step generation of multipartite entanglement among nitrogen-vacancy center ensembles. Sci. Rep. 5, 7755 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Tao, M.J., Hua, M., Ai, Q., Deng, F.G.: Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 062325 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Bar-Gill, N., Pham, L.M., Jarmola, A., Budker, D., Walsworth, R.L.: Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Duan, L.M., Guo, G.C.: Reducing decoherence in quantum computer memory with all quantum bits coupling to the same environment. Phys. Rev. A 57, 737 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    Zhou, X., Wulf, M., Zhou, Z., Guo, G., Feldman, M.J.: Dispersive manipulation of paired superconducting qubits. Phys. Rev. A 69, 030301(R) (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Aolita, L., Davidovich, L., Kim, K., Häffner, H.: Universal quantum computation in decoherence-free subspaces with hot trapped ions. Phys. Rev. A 75, 052337 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Feng, Z.B., Zhang, X.D.: Quantum computing in decoherence-free subspaces with superconducting charge qubits. Phys. Lett. A 372, 16 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Xue, Z.Y., Wang, Z.D., Zhu, S.L.: Physical implementation of topologically decoherence-protected superconducting qubits. Phys. Rev. A 77, 024301 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Wu, C.F., Feng, X.L., Yi, X.X., Chen, I.M., Oh, C.H.: Quantum gate operations in the decoherence-free subspace of superconducting quantum-interference devices. Phys. Rev. A 78, 062321 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Wang, Y.M., Zhou, Y.L., Liang, L.M., Li, C.Z.: Quantum gate operations in decoherence-free subspace with superconducting charge qubits inside a cavity. Chin. Phys. Lett. 26, 100304 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Hu, S., Cui, W.X., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Multi-qubit non-adiabatic homonymic controlled quantum gates in decoherence-free subspaces. arXiv:1601.02438
  39. 39.
    Neeley, M., et al.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523 (2008)CrossRefGoogle Scholar
  40. 40.
    Su, Q.P., Yang, C.P., Zheng, S.B.: Fast and simple scheme for generating NOON states of photons in circuit QED. Sci. Rep. 4, 3898 (2014)ADSGoogle Scholar
  41. 41.
    Yu, Y., Han, S.: Private communication (2016)Google Scholar
  42. 42.
    Leek, P.J., et al.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511(R) (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Strand, J.D., et al.: First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505(R) (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Yang, W.L., Hu, Y., Yin, Z.Q., Deng, Z.J., Feng, M.: Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit. Phys. Rev. A 83, 022302 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Neumann, P., Kolesov, R., Jacques, V., Beck, J., Tisler, J., Batalov, A., Rogers, L., Manson, N.B., Balasubramanian, G., Jelezko, F., Wrachtrup, J.: Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance. New J. Phys. 11, 013017 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    Pradhan, P., Anantram, M.P., Wang, K.L.: Quantum computation by optically coupled steady atoms/quantum-dots inside a quantum electro-dynamic cavity. arXiv:quant-ph/0002006
  47. 47.
    Yang, C.P., Han, S.: n-qubit-controlled phase gate with superconducting quantum interference devices coupled to a resonator. Phys. Rev. A 72, 032311 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    James, D.F.V., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    Brune, M., Hagley, E., Dreyer, J., Maitre, X., Maali, A., Wunderlich, C., Raimond, J.M., Haroche, S.: Observing the progressive decoherence of the “Meter’ in a quantum measurement. Phys. Rev. Lett. 77, 4887 (1996)ADSCrossRefGoogle Scholar
  52. 52.
    Palacios-Laloy, A., Nguyen, F., Mallet, F., Bertet, P., Vion, D., Esteve, D.: Tunable resonators for quantum circuits. J. Low Temp. Phys. 151, 1034 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    Sandberg, M., Wilson, C.M., Persson, F., Bauch, T., Johansson, G., Shumeiko, V., Duty, T., Delsing, P.: Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92, 203501 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    Wang, Z.L., Zhong, Y.P., He, L.J., Wang, H., Martinis, J.M., Cleland, A.N., Xie, Q.W.: Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett. 102, 163503 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  57. 57.
    Giovannetti, V., Vitali, D., Tombesi, P., Ekert, A.: Scalable quantum computation with cavity QED systems. Phys. Rev. A 62, 032306 (2000)ADSCrossRefGoogle Scholar
  58. 58.
    He, X.L., Yang, C.P., Li, S., Luo, J.Y., Han, S.: Quantum logical gates with four-level superconducting quantum interference devices coupled to a superconducting resonator. Phys. Rev. A 82, 024301 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    Baur, M., Filipp, S., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Leek, P.J., Blais, A., Wallraff, A.: Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit. Phys. Rev. Lett. 102, 243602 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    Niemczyk, T., et al.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772 (2010)CrossRefGoogle Scholar
  61. 61.
    DiCarlo, L., et al.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    Stern, M., Catelani, G., Kubo, Y., Grezes, C., Bienfait, A., Vion, D., Esteve, D., Bertet, P.: Flux qubits with long coherence times for hybrid quantum circuits. Phys. Rev. Lett. 113, 123601 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    Chang, J.B., et al.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    Peterer, M.J., Bader, S.J., Jin, X., Yan, F., Kamal, A., Gudmundsen, T.J., Leek, P.J., Orlando, T.P., Oliver, W.D., Gustavsson, S.: Coherence and decay of higher energy levels of a superconducting transmon qubit. Phys. Rev. Lett. 114, 010501 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    Chen, W., Bennett, D.A., Patel, V., Lukens, J.E.: Substrate and process dependent losses in superconducting thin film resonators. Supercond. Sci. Technol. 21, 075013 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    Leek, P.J., Baur, M., Fink, J.M., Bianchetti, R., Steffen, L., Filipp, S., Wallraff, A.: Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of ScienceZhejiang University of Science and TechnologyHangzhouChina
  2. 2.Department of PhysicsHangzhou Normal UniversityHangzhouChina

Personalised recommendations