Nearly deterministic Bell measurement using quantum communication bus

  • Jia-Ming Wang
  • Meng-zheng Zhu
  • Dong Wang
  • Liu Ye


We present a scheme to implement Bell states measurement for an arbitrary number of photons by using robust continuous variable coherent modes, called as quantum communication bus (qubus) and weak cross-Kerr nonlinearities. Remarkably, the success probability of our scheme is close to unity, and our scheme does not require any ancillary resource entanglement. Our scheme is likely to yield versatile applications for quantum computation and quantum teleportation.


Bell states measurement Cross-Kerr nonlinearities Qubus 



This work was supported by the National Science Foundation of China under Grant Nos. 11575001, 61275119 and 61601002, Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139) and also by the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2013A205.


  1. 1.
    Barenco, A., Dutch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Cre’peau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Kieling, K., Rudolph, T., Eisert, J.: Percolation, renormalization, and quantum computing with nondeterministic gates. Phys. Rev. Lett. 99, 130501 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kieling, K., Eisert, J.: Quantum and Semi-Classical Percolation and Breakdown in Disordered Solids. Lecture Notes in Physics, vol. 762, pp. 287–319. Springer, Berlin (2008)MATHGoogle Scholar
  8. 8.
    Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Ralph, T.C., Pryde, G.J.: Chapter 4—optical quantum computation. Prog. Opt. 54, 209 (2010)CrossRefGoogle Scholar
  10. 10.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)ADSCrossRefMATHGoogle Scholar
  11. 11.
    Lütkenhaus, N., Calsamiglia, J., Suominen, K.A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Calsamiglia, J., Lütkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Grice, W.P.: Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Ewert, F., van Loock, P.: Efficient Bell measurement with passive linear optics and unentangled Ancillae. Phys. Rev. Lett. 113, 140403 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Zaidi, H.A., van Loock, P.: Beating the one-half limit of Ancilla-free linear optics Bell measurements. Phys. Rev. Lett. 110, 260501 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Jeong, H., Kim, M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Lee, S.W., Jeong, H.: In: Proceedings of the First International Workshop on Entangled Coherent States and Its Application to Quantum Information Science, pp. 41–46. Tamagawa University, Tokyo (2012)Google Scholar
  20. 20.
    Seung, W.L., Kimin, P., Timothy, C.R., Hyunseok, J.: Nearly deterministic Bell measurement with multiphoton entanglement for efficient quantum-information processing. Phys. Rev. A 92, 052324 (2015)CrossRefGoogle Scholar
  21. 21.
    Seung, W.L., Kimin, P., Timothy, C.R., Hyunseok, J.: Nearly deterministic Bell measurement for multiphoton qubits and its application to quantum information processing. Phys. Rev. Lett. 114, 113603 (2015)CrossRefGoogle Scholar
  22. 22.
    Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (R) (2005)Google Scholar
  23. 23.
    Zhou, J., Yang, M., Lu, Y., Cao, Z.L.: Nearly deterministic teleportation of a photonic qubit with weak cross-Kerr nonlinearities. Chin. Phys. Lett. 26(10), 100301 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Guo, Q., Bai, J., Cheng, L.Y., Shao, X.Q., Wang, H.F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    He, B., Nadeem, M., Bergou, J.A.A.: Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity. Phys. Rev. A 79, 035802 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    Louis, S.G.R., Nemoto, K., Munro, W.J., Spiller, T.P.: The efficiencies of generating cluster states with weak nonlinearities. New J. Phys. 9, 193 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Zhao, C.R., Ye, L.: Robust scheme for the preparation of symmetric Dicke states with coherence state via cross-Kerr nonlinearity. Opt. Commun. 284, 541–544 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Li, X.Y., Voss, P.L., Sharping, J.E., Kumar, P.: Optical-Fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 053601 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Munro, W.J., Nemoto, K., Beausoleil, R.G., Spiller, T.P.: High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71, 033819 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    Harris, S.E., Hau, L.V.: Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    Braje, D.A., Balić, V., Yin, G.Y., Harris, S.E.: Low-light-level nonlinear optics with slow light. Phys. Rev. A 68, 041801 (R) (2003)Google Scholar
  35. 35.
    Metz, J., Trupke, M., Beige, A.: Robust entanglement through macroscopic quantum jumps. Phys. Rev. Lett. 97, 040503 (2006)ADSCrossRefMATHGoogle Scholar
  36. 36.
    Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Bachor, H., Ralph, T.C.: A Guide to Experiments in Quantum Optics. Wiley, Weinheim (2004)CrossRefGoogle Scholar
  38. 38.
    Zhu, M.Z., Yin, X.G.: Highly efficient optical Fredkin gate with weak nonlinearities and classical information feed-forward. J. Opt. Soc. Am. B 30, 355–361 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jia-Ming Wang
    • 1
  • Meng-zheng Zhu
    • 1
  • Dong Wang
    • 1
  • Liu Ye
    • 1
  1. 1.School of Physics & Material ScienceAnhui UniversityHefeiChina

Personalised recommendations