Quantum correlations responsible for remote state creation: strong and weak control parameters



We study the quantum correlations between the two remote qubits (sender and receiver) connected by the transmission line (homogeneous spin-1/2 chain) depending on the parameters of the sender’s and receiver’s initial states (control parameters). We consider two different measures of quantum correlations: the entanglement (a traditional measure) and the informational correlation (based on the parameter exchange between the sender and receiver). We find the domain in the control parameter space yielding (i) zero entanglement between the sender and receiver during the whole evolution period and (ii) non-vanishing informational correlation between the sender and receiver, thus showing that the informational correlation is responsible for the remote state creation. Among the control parameters, there are the strong parameters (which strongly effect the values of studied measures) and the weak ones (whose effect is negligible), therewith the eigenvalues of the initial state are given a privileged role. We also show that the problem of small entanglement (concurrence) in quantum information processing is similar (in certain sense) to the problem of small determinants in linear algebra. A particular model of 40-node spin-1/2 communication line is presented.


Entanglement Informational correlation Control parameters Strong and week control parameters Information transfer Remote state creation 



Authors thank Prof. E.B.Fel’dman for useful discussion. This work is partially supported by the Program of the Presidium of RAS ”Element base of quantum computers”(No. 0089-2015-0220) and by the Russian Foundation for Basic Research, Grant No. 15-07-07928.


  1. 1.
    Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen, A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)ADSCrossRefMATHGoogle Scholar
  5. 5.
    Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Zurek, W.H.: Einselection and decoherence from an information theory perspective. Ann. Phys. (Leipzig) 9, 855 (2000)Google Scholar
  12. 12.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefMATHGoogle Scholar
  14. 14.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.-C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.-C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarizations for quantum communication. In: Meyers, R.E., Shih, Y. (eds.) Quantum Communications and Quantum Imaging III, Proceedings of SPIE, vol. 5893 (SPIE, Bellingham 2005). doi: 10.1117/12.615734
  20. 20.
    Dakic, B.: Lipp, YaO, Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)CrossRefGoogle Scholar
  21. 21.
    Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13, 1639 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Albanese, C., Christandl, M., Datta, N., Ekert, A.: Mirror inversion of quantum states in linear registers. Phys. Rev. Lett. 93, 230502 (2004)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Karbach, P., Stolze, J.: Spin chains as perfect quantum state mirrors. Phys. Rev. A 72, 030301(R) (2005)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Gualdi, G., Kostak, V., Marzoli, I., Tombesi, P.: Perfect state transfer in long-range interacting spin chains. Phys. Rev. A 78, 022325 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Wójcik, A., Luczak, T., Kurzyński, P., Grudka, A., Gdala, T., Bednarska, M.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Nikolopoulos, G.M., Jex, I. (eds.): Quantum State Transfer and Network Engineering. Series in Quantum Science and Technology. Springer, Berlin (2014)MATHGoogle Scholar
  30. 30.
    Stolze, J., Álvarez, G.A., Osenda, O., Zwick, A.: Quantum state transfer and network engineering. In: Nikolopoulos, G.M., Jex, I. (eds.) Quantum Science and Technology, p. 149. Springer, Berlin (2014)Google Scholar
  31. 31.
    Chen, B.: Song, Zh: Coherent state transfer through a multi-channel quantum network: natural versus controlled evolution passage. Sci. China Phys. Mech. Astron. 53, 1266 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Bishop, C.A.: Ou, Yo-Ch., Wang, Zh-M, Byrd, M.S.: High-fidelity state transfer over an unmodulated linear XY spin chain. Phys. Rev. A 81, 042313 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Apollaro, T.J.G., Banchi, L., Cuccoli, A., Vaia, R., Verrucchi, P.: 99-Fidelity ballistic quantum-state transfer through long uniform channels. Phys. Rev. A 85, 052319 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Zenchuk, A.I.: Information propagation in a quantum system: examples of open spin-1/2 chains. J. Phys. A Math. Theor. 45, 115306 (2012)Google Scholar
  35. 35.
    Zenchuk, A.I.: Informational correlation between two parties of a quantum system. Spin-1/2 chains. Quant. Inf. Process. 13, 2667–2711 (2014). arXiv:1307.0272 [quant-ph]
  36. 36.
    Fel’dman, E.B., Yurishchev, M.A.: Fluctuations of quantum entanglement. JETP Lett. 90(1), 70 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Yurishchev, M.A.: Entanglement entropy fluctuations in quantum Ising chains. J. Exp. Theor. Phys. 111(4), 525 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Stolze, J., Zenchuk, A.I.: Remote two-qubit state creation and its robustness. Quant. Inf. Proc. 15, 3347 (2016)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Zenchuk, A.I.: Remote creation of a one-qubit mixed state through a short homogeneous spin-1/2 chain. Phys. Rev. A 90(13), 052302 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Bochkin, G.A., Zenchuk, A.I.: Remote one-qubit-state control using the pure initial state of a two-qubit sender: selective-region and eigenvalue creation. Phys. Rev. A 91(11), 062326 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRASChernogolovka, MoscowRussia

Personalised recommendations