Entanglement of two hybrid optomechanical cavities composed of BEC atoms under Bell detection

Article
  • 118 Downloads

Abstract

In this paper, firstly, we consider bipartite entanglement between each part of an optomechanical cavity composed of one-dimensional Bose–Einstein condensate (BEC). We investigate atomic collision on the behaviour of the BEC in the week photon–atom coupling constant and use Bogoliubov approximation for the BEC. Secondly under above condition, we propose a scheme for entanglement swapping protocol which involves tripartite systems. In our investigation, we consider a scenario where BECs, moving mirrors, and optical cavity modes are given in a Gaussian state with a covariance matrix. By applying the Bell measurement to the output optical field modes, we show how the remote entanglement between two BECs, two moving mirrors, and BEC-mirror modes in different optomechanical cavity can be generated.

Keywords

Entanglement swapping Optomechanics Hybrid Systems Bose–Einstein condensation 

References

  1. 1.
    Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys 84, 621 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Jaksch, D., Briegel, H.-J., Cirac, J.I., Gardiner, C.W., Zoller, P.: Entanglement of Atoms via Cold Controlled Collisions. Phys. Rev. Lett. 82, 1975 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Turchette, Q.A., Wood, C.S., King, B.E., Myatt, C.J., Leibfried, D., Itano, W.M., Monroe, C., Wineland, D.J.: Deterministic Entanglement of Two Trapped Ions. Phys. Rev. Lett. 81, 3631 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Mendona, P.E., Marchiolli, M.A., Galetti, D.: Entanglement universality of two-qubit X-states. Ann. Phys. 351, 79 (2014)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Ann. Phys. 325, 816 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Pan, J.-W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental Entanglement Swapping: Entangling Photons That Never Interacted. Phys. Rev. Lett. 80, 3891 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    de Lima Bernardo, B.: How a single photon can mediate entanglement between two others. Ann. Phys. 373, 80 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Haq, S.U., Khalique, A.: Long distance cavity entanglement by entanglement swapping using atomic momenta. Opt. Commun. 334, 290 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Abdi, M., Pirandola, S., Tombesi, P., Vitali, D.: Continuous-variable-entanglement swapping and its local certification: entangling distant mechanical modes. Phys. Rev. A 89, 022331 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Abdi, M., Pirandola, S., Tombesi, P., Vitali, D.: Entanglement swapping with local certification: application to remote micromechanical resonators. Phys. Rev. Lett. 109, 143601 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Jia, X., Su, X., Pan, Q., Gao, J., Xie, C., Peng, K.: Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93, 250503 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Takei, N., Yonezawa, H., Aoki, T., Furusawa, A.: High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94, 220502 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Dalafi, A., Naderi, M.H., Soltanolkotabi, M., Barzan- jeh, S.: Nonlinear effects of atomic collisions on the optomechanical properties of a Bose-Einstein condensate in an optical cavity. Phys. Rev. A 87, 013417 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Maschler, C., Ritsch, H.: Quantum motion of laser-driven atoms in a cavity field. Opt. Commun. 243, 145 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Asbóth, J.K., Domokos, P., Ritsch, H., Vukics, A.: Self-organization of atoms in a cavity field: threshold, bistability, and scaling laws. Phys. Rev. A 72, 053417 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Maschler, C., Ritsch, H.: Cold atom dynamics in a quantum optical lattice potential. Phys. Rev. Lett. 95, 260401 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Nagy, D., Domokos, P., Vukics, A., Ritsch, H.: Nonlinear quantum dynamics of two BEC modes dispersively coupled by an optical cavity. Eur. Phys. J. D 55, 659 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Dalafi, A., Naderi, M.H., Soltanolkotabi, M., Barzan- jeh, S.: Controllability of optical bistability, cooling and entanglement in hybrid cavity optomechanical systems by nonlinear atom–atom interaction. J. Phys. B: At. Mol. Opt. Phys 46, 235502 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Drummond, P., Gardiner, C.: Generalised P-representations in quantum optics. J. Phys. A. Math. Gen. 13, 2353 (1980)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Pinard, M., Hadjar, Y., Heidmann, A.: Effective mass in quantum effects of radiation pressure. Eur. Phys. J. D 7, 107 (1999)ADSGoogle Scholar
  24. 24.
    Law, C.: Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation. Phys. Rev. A 51, 2537 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    Benguria, R., Kac, M.: Quantum langevin equation. Phys. Rev. Lett. 46, 1 (1981)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Dalafi, A., Naderi, M., Soltanolkotabi, M., Barzanjeh, S.: Nonlinear effects of atomic collisions on the optomechanical properties of a Bose-Einstein condensate in an optical cavity. Phys. Rev. A 87, 013417 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Zhang, K., Chen, W., Bhattacharya, M., Meystre, P.: Hamiltonian chaos in a coupled BEC-optomechanical-cavity system. Phys. Rev. A 81, 013802 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Gradshteyn, I., Ryzhik, I.: Tables of Integrals, Series and Products, Corrected and, Enlarged edn. Academic Press, New York (1980)MATHGoogle Scholar
  29. 29.
    Genes, C., Mari, A., Tombesi, P., Vitali, D.: Robust entanglement of a micromechanical resonator with output optical fields. Phys. Rev. A 78, 032316 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Barzanjeh, S., Pirandola, S., Weedbrook, C.: Continuous-variable dense coding by optomechanical cavities. Phys. Rev. A 88, 042331 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Eghbali-Arani, M., Yavari, H., Shahzamanian, M., Giovannetti, V., Barzanjeh, S.: Generating quantum discord between two distant Bose–Einstein condensates with Bell-like detection. JOSA B 32, 798 (2015)Google Scholar
  32. 32.
    Spedalieri, G., Ottaviani, C., Pirandola, S.: Covariance matrices under Bell-like detections. Open Syst. Inf. Dyn. 20, 1350011 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KashanKashanIran
  2. 2.Department of Physics, Faculty of ScienceUniversity of HormozganBandar-AbbasIran

Personalised recommendations