Advertisement

An ancilla-based quantum simulation framework for non-unitary matrices

  • Ammar DaskinEmail author
  • Sabre Kais
Article

Abstract

The success probability in an ancilla-based circuit generally decreases exponentially in the number of qubits consisted in the ancilla. Although the probability can be amplified through the amplitude amplification process, the input dependence of the amplitude amplification makes difficult to sequentially combine two or more ancilla-based circuits. A new version of the amplitude amplification known as the oblivious amplitude amplification runs independently of the input to the system register. This allows us to sequentially combine two or more ancilla-based circuits. However, this type of the amplification only works when the considered system is unitary or non-unitary but somehow close to a unitary. In this paper, we present a general framework to simulate non-unitary processes on ancilla-based quantum circuits in which the success probability is maximized by using the oblivious amplitude amplification. In particular, we show how to extend a non-unitary matrix to an almost unitary matrix. We then employ the extended matrix by using an ancilla-based circuit design along with the oblivious amplitude amplification. Measuring the distance of the produced matrix to the closest unitary matrix, a lower bound for the fidelity of the final state obtained from the oblivious amplitude amplification process is presented. Numerical simulations for random matrices of different sizes show that independent of the system size, the final amplified probabilities are generally around 0.75 and the fidelity of the final state is mostly high and around 0.95. Furthermore, we discuss the complexity analysis and show that combining two such ancilla-based circuits, a matrix product can be implemented. This may lead us to efficiently implement matrix functions represented as infinite matrix products on quantum computers.

Keywords

Oblivious amplitude amplification Phase estimation algorithm Quantum circuits Matrix functions 

References

  1. 1.
    Wang, H., Wu, L.-A., Liu, Y.-X., Nori, F.: Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices. Phys. Rev. A 82, 062303 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Terashima, H., Ueda, M.: Nonunitary quantum circuit. Int. J. Quantum Inf. 3, 633–647 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Daskin, A., Grama, A., Kais, S.: A universal quantum circuit scheme for finding complex eigenvalues. Quantum Inf. Process. 13, 333–353 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Mosca, M., et al.: Quantum searching, counting and amplitude amplification by eigenvector analysis. In: MFCS98 Workshop on Randomized Algorithms, pp. 90–100 (1998)Google Scholar
  6. 6.
    Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Paetznick, A., Svore, K.M.: Repeat-until-success: non-deterministic decomposition of single-qubit unitaries. Quantum Inf. Comput. 14, 1277–1301 (2014)MathSciNetGoogle Scholar
  8. 8.
    Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse hamiltonians. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing (ACM, 2014), pp. 283–292 (2014)Google Scholar
  9. 9.
    Lim, Y.L., Beige, A., Kwek, L.C.: Repeat-until-success linear optics distributed quantum computing. Phys. Rev. Lett. 95, 030505 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Lim, Y.L., Barrett, S.D., Beige, A., Kok, P., Kwek, L.C.: Repeat-until-success quantum computing using stationary and flying qubits. Phys. Rev. A 73, 012304 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Kothari, R.: Efficient algorithms in quantum query complexity. Ph.D. thesis, University of Waterloo (2014)Google Scholar
  12. 12.
    Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114, 090502 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch, K.J., Pryde, G.J., O/’Brien, J.L., Gilchrist, A., White, A.G.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009)CrossRefGoogle Scholar
  14. 14.
    Mackay, T.D., Bartlett, S.D., Stephenson, L.T., Sanders, B.C.: Quantum walks in higher dimensions. J. Phys. A: Math. Theor. 35, 2745 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Daskin, A., Grama, A., Kollias, G., Kais, S.: Universal programmable quantum circuit schemes to emulate an operator. J. Chem. Phys. 137, 234112 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Kaye, P., Mosca, M., Laflamme, R.: An Introduction to Quantum Computing. Oxford Univ. Press, Oxford (2006)zbMATHGoogle Scholar
  17. 17.
    Björck, Å., Hammarling, S.: A Schur method for the square root of a matrix. Linear Algebra Appl. 52, 127–140 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Higham, N.J.: Computing real square roots of a real matrix. Linear Algebra Appl. 88, 405–430 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tucci, R.R.: A Rudimentary Quantum Compiler, 2nd edn. arXiv preprint arXiv:quant-ph/9902062 (1999)
  20. 20.
    Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93, 130502 (2004)CrossRefGoogle Scholar
  21. 21.
    Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 1000–1010 (2006)CrossRefGoogle Scholar
  22. 22.
    Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall Inc., Upper Saddle River, NJ (1998)Google Scholar
  23. 23.
    Higham, N.J.: Matrix Nearness Problems and Applications. Department of Mathematics, University of Manchester, Manchester (1988)zbMATHGoogle Scholar
  24. 24.
    Daskin, A.: Quantum circuit design methods and applications. Ph.D. thesis, Purdue University (2014)Google Scholar
  25. 25.
    Daskin, A., Kais, S.: Decomposition of unitary matrices for finding quantum circuits: application to molecular hamiltonians. J. Chem. Phys. 134, 144112 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Stojanović, V.M., Fedorov, A., Wallraff, A., Bruder, C.: Quantum-control approach to realizing a Toffoli gate in circuit QED. Phys. Rev. B 85, 054504 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Drury, B., Love, P.: Constructive quantum Shannon decomposition from Cartan involutions. J. Phys. A: Math. Theor. 41, 395305 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Cybenko, G.: Reducing quantum computations to elementary unitary operations. Comput. Sci. Eng. 3, 27–32 (2001)CrossRefGoogle Scholar
  29. 29.
    Zwillinger, D.: Table of Integrals, Series, and Products. Elsevier, Amsterdam (2014)Google Scholar
  30. 30.
    Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas. Princeton University Press, Princeton (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer EngineeringIstanbul Medeniyet UniversityKadikoy, IstanbulTurkey
  2. 2.Department of Chemistry, Department of Physics and Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  3. 3.Qatar Environment and Energy Research InstituteHBKUDohaQatar

Personalised recommendations