Abstract
In this paper, a novel quantum homomorphic signature scheme based solely on Bell-state measurement is proposed. It allows an aggregator to merge two signature nodes’ signatures of their classical messages into one signature, which is an effective approach to identity authentication for multiple streams to enhance the security of quantum networks. And it is easy to generalize this scheme to multiple nodes. Bell-state measurement has been realized by using only linear optical elements in many experimental measurement-device-independent quantum key distribution schemes, which makes us believe that our scheme can be realized in the near future. It is shown that our scheme is a quantum group homomorphic signature scheme and is secure by the scheme analysis.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring:Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on. IEEE, 1994: 124-134
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)
Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint arXiv:quant-ph/0105032, (2001)
Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)
Curty, M., Ltkenhaus, N.: Comment on arbitrated quantum-signature scheme. Phys. Rev. A 77(4), 1–4 (2008)
Zeng, G.H.: Reply to Comment on Arbitrated quantum-signature scheme. Phys. Rev. A 77(1), 1–5 (2008)
Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)
Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)
Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(16), 3198–3201 (2010)
Yang, Y.G., Wen, Q.Y.: Erratum: arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(19), 3830 (2010)
Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 17864–17875 (2011)
Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)
Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 672–672 (2014)
Collins, R.J., Donaldson, R.J., Dunjko, V., et al.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 1–14 (2014)
Wallden, P., Dunjko, V., Kent, A.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)
Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17, 415 (2008)
Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. China, Ser. G Phys. Mech. Astron. 51, 1079–1088 (2008)
Yang, Y.G., Wang, Y., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. 54, 84 (2010)
Wen, X., Tian, Y., Ji, L., et al.: A group signature scheme based on quantum teleportation. Phys. Scr. 81(5), 561–578 (2010)
Chaum, D.: Group Signature Advances in Cryptology Eurocrypt91 LNCS 547, pp. 257–265. Springer, Berlin (1992)
Zhang, K.J., Song, T.T., Zuo, H.J., et al.: A secure quantum signature scheme based on Bell states. Phys. Scr. 87, 045012 (2013)
Su, Q., Li, W.M.: Improved Group Signature Scheme Based on Quantum Teleportation. Int. J. Theor. Phys. 53(4), 1208–1216 (2014)
Xu, G.B., Zhang, K.J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process. 14, 2577–2587 (2015). doi:10.1007/s11128-015-0995-z
Shang, T., Zhao, X.J., Wang, C., et al.: Quantum homomorphic signature. Quantum Inf. Process. 14(1), 393–410 (2015)
Johnson, R., Molnar, D., Song, D., et al.: Homomorphic Signature Schemes[M]//Topics in Cryptology CT-RSA 2002. Springer, Berlin Heidelberg (2002)
Grice, W.P.: Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84(4), 042331 (2011)
Kok, P., Munro, W.J., Nemoto, K., et al.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135 (2007)
Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, Bangalore, India, 175-179 (1984)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)
Liu, Y., Chen, T.Y., Wang, L.J., et al.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502 (2013)
Tang, Z., Liao, Z., Xu, F., et al.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503 (2014)
Tang, Z., Wei, K., Bedroya, O., et al.: Experimental Measurement-Device-Independent Quantum Key Distribution with Imperfect Sources[J]. arXiv preprint arXiv:1508.03562, (2015)
Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044 (1987)
Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86(7), 1370 (2001)
Lo, H.K., Chau, H.F.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005)
Luo, Q.B., Yang, G.W., She, K., et al.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum. Inf. Process. 13(10), 2343–2352 (2014)
Chang, Y., Tsai, C., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)
Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)
Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)
Acknowledgments
The authors thank the anonymous reviewers for their constructive comments and useful suggestions. This work is supported by China State Scholarship Fund, National Natural Science Foundation of China (Nos. 61272175, 61401176, 61572109, 61502082), the Fundamental Research Funds for the Central Universities (No. ZYGX2014J065) and Natural Science Foundation of Guangdong Province, China (No. 2014A030310205).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Luo, Qb., Yang, Gw., She, K. et al. Quantum homomorphic signature based on Bell-state measurement. Quantum Inf Process 15, 5051–5061 (2016). https://doi.org/10.1007/s11128-016-1440-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-016-1440-7