Quantum Information Processing

, Volume 15, Issue 11, pp 4521–4535 | Cite as

Two-photon phase gate with linear optical elements and atom–cavity system

  • Yi-Hao Kang
  • Yan Xia
  • Pei-Min Lu


We propose a protocol for implementing \(\pi \) phase gate of two photons with linear optical elements and an atom–cavity system. The evolution of the atom–cavity system is based on the quantum Zeno dynamics. The devices in the present protocol are simple and feasible with current experimental technology. Moreover, the method we proposed here is deterministic with a high fidelity. Numerical simulation shows that the evolution in cavity is efficient and robust. Therefore, the protocol may be helpful for quantum computation field.


Photon phase gate Linear optical element Atom–cavity system 



This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575045 and 11374054, the SRTP Foundation of China under Grant No. 201510386025 and the Major State Basic Research Development Program of China under Grant No. 2012CB921601.


  1. 1.
    Gorbachev, V.N., Trubilko, A.I., Rodichkina, A.A., Zhiliba, A.I.: Can the states of the W-class be suitable for teleportation. Phys. Lett. A 314, 267 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Liu, X.S., Long, G.L., Tong, D.M., Feng, L.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39, 459 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Shor, P.W.: Algorithms for quantum computing: discrete log and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, vol. 124. IEEE Computer Society Press, Los Alamitos, CA (1994)Google Scholar
  8. 8.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Xu, H., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130501 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 212 (2014)Google Scholar
  22. 22.
    Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 2241 (2013)Google Scholar
  23. 23.
    Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Wu, H.Z., Yang, Z.B., Zheng, S.B.: Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade. Phys. Rev. A 82, 034307 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Chudzicki, C., Chuang, I.L., Shapiro, J.H.: Deterministic and cascadable conditional phase gate for photonic qubits. Phys. Rev. A 87, 042325 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Brod, D.J., Combes, J.: A passive CPHASE gate via cross-Kerr nonlinearities. arXiv:1604.04278 (2016)
  29. 29.
    Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    McKeever, J., Buck, J.R., Boozer, A.D., Kuzmich, A., Nägerl, H.C., Stamper-Kurn, D.M., Kimble, H.J.: State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90, 133602 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436, 87 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno subspaces. J. Phys. Conf. Ser. 196, 012017 (2009)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Facchi, P., Pascazio, S., Scardicchio, A., Schulman, L.S.: Zeno dynamics yields ordinary constraints. Phys. Rev. A 65, 012108 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    Facchi, P., Pascazioand, S.: Quantum Zeno and inverse quantum Zeno effects, chap.3. In: Wolf, E. (ed.) Progress in Optics, vol. 42, p. 147. Elsevier, Amsterdam (2001)Google Scholar
  38. 38.
    Li, W.A., Huang, G.Y.: Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 83, 022322 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Chen, Y.H., Xia, Y., Song, J.: Deterministic generation of singlet states for N-atoms in coupled cavities via quantum Zeno dynamics. Quantum Inf. Process. 13, 1857 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Luis, A.: Quantum-state preparation and control via the Zeno effect. Phys. Rev. A 63, 052112 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Shao, X.Q., Chen, L., Zhang, S., Yeon, K.H.: Fast CNOT gate via quantum Zeno dynamics. J. Phys. B At. Mol. Opt. Phys. 42, 165507 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Kimble, H.J.: The quantum internet. Nature (London) 453, 1023 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Sheng, Y.B., Deng, F.G.: Efficient quantum entanglement distribution over an arbitrary collective-noise channel. Phys. Rev. A 81, 042332 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    Kang, Y.H., Xia, Y., Lu, P.M.: Efficient preparation of Greenberger–Horne–Zeilinger state and W state of atoms with the help of the controlled phase flip gates in quantum nodes connected by collective-noise channels. J. Mod. Opt. 62, 449 (2015)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Spillane, S.M., Kippenberg, T.J., Vahala, K.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849 (2006)CrossRefGoogle Scholar
  49. 49.
    Buck, J.R., Kimble, H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67, 033806 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287 (1985)ADSCrossRefGoogle Scholar
  51. 51.
    Zou, X.B., Zhang, S.L., Li, K., Guo, G.C.: Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors. Phys. Rev. A 75, 034302 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    Song, J., Xia, Y., Song, H.S., Guo, J.L., Nie, J.: Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities. Euro. Phys. Lett. 80, 60001 (2007)Google Scholar
  53. 53.
    Eibl, M., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    Mikami, H., Li, Y., Kobayashi, T.: Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion. Phys. Rev. A 70, 052308 (2004)ADSCrossRefGoogle Scholar
  57. 57.
    Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled W state using parametric down-conversion. Phys. Rev. A 66, 064301 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 044305 (2012)Google Scholar
  61. 61.
    Ota, Y., Ashhab, S., Nori, F.: Implementing general measurements on linear optical and solid-state qubits. Phys. Rev. A 85, 043808 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsFuzhou UniversityFuzhouChina

Personalised recommendations